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Saliency maps capture importance of an input part for a specific
task performed by a neural network. How is such importance

defined?

Local vs Global importance

There are two different notions of saliency used in literature
e Local importance captures model sensitivity to input
e Global importance captures the ability to recover model out-

put using the saliency map (a.k.a. completeness of saliency map)

Question: Can a saliency method satisfy both these properties?
Answer: No. (Proposition 1 in the paper)

Why? Saliency methods are too restrictive.

Implications: One can always find counter-intuitive behaviour
for saliency maps by violating some notion of importance.

Full-Gradients

f(-) — neural network, x — input
w — weights of all layers, b — biases of all layers

f(x;w,b) = Vif(x;w,b)' x + Vpf(x;w,b) b
S— ——

input-gradients bias-gradients

Bias-gradients — gradient of output w.r.t. intermediate features

Full-gradients satisfy both notions of importance as they are

more expressive than saliency maps.

FullGrad Saliency

We propose FullGrad saliency which incorporates both input-

gradients and feature-level bias-gradients.

Se(x) =P(Vxf(xw,b) ©x)+ » > P (Vpf(x;w,b) ®b)

layers channels

where 9 (-) is a normalization function.

We show that any neural network’s
output score can be decomposed
into an input-gradient term and
per-neuron gradient terms.

For ConvNets, we find that
aggregating these gradient maps
lead to iImproved saliency maps.

Visualizations
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(Left) Pixel sensitivity test: remove least salient pixels and ob-
serve change in output. Smaller is better. (Right) Remove and
Retrain (ROAR) test: remove most salient pixels in training set,
retrain, and observe accuracy. Smaller is better.
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