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Saliency maps capture importance of an input part for a specific
task performed by a neural network. How is such importance
defined?

Local vs Global importance
There are two different notions of saliency used in literature
• Local importance captures model sensitivity to input
•Global importance captures the ability to recover model out-
put using the saliencymap (a.k.a. completeness of saliencymap)

Question: Can a saliencymethod satisfy both these properties?
Answer: No. (Proposition 1 in the paper)
Why? Saliencymethods are too restrictive.
Implications: One can always find counter-intuitive behaviour
for saliencymaps by violating some notion of importance.

Full-Gradients
f (·)→ neural network, x→ input
w→weights of all layers, b→ biases of all layers
f (x;w,b) = ∇xf (x;w,b)T︸ ︷︷ ︸

input-gradients
x + ∇bf (x;w,b)T︸ ︷︷ ︸

bias-gradients
b

Bias-gradients→ gradient of output w.r.t. intermediate features
Full-gradients satisfy both notions of importance as they are
more expressive than saliencymaps.

FullGrad Saliency
We propose FullGrad saliency which incorporates both input-
gradients and feature-level bias-gradients.
Sf (x) = ψ(∇xf (x;w,b)⊙ x) +

∑
layers

∑
channels

ψ (∇bf (x;w,b)⊙ b)

whereψ(·) is a normalization function.

We show that any neural network’s
output score can be decomposed
into an input-gradient term and
per-neuron gradient terms.

For ConvNets, we find that
aggregating these gradient maps
lead to improved saliencymaps.

Visualizations
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Experiments
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(Left) Pixel sensitivity test: remove least salient pixels and ob-
serve change in output. Smaller is better. (Right) Remove and
Retrain (ROAR) test: remove most salient pixels in training set,
retrain, and observe accuracy. Smaller is better.
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