
Learning Compact Architectures for Deep Neural Networks

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Science (Engineering)

IN THE

Faculty of Engineering

BY

Suraj Srinivas

Department of Computational and Data Science

Indian Institute of Science

Bangalore – 560 012 (INDIA)

January, 2017



Declaration of Originality

I, Suraj Srinivas, with SR No. 06-02-00-10-21-14-1-11462 hereby declare that the material

presented in the thesis titled

Learning Compact Architectures for Deep Neural Networks

represents original work carried out by me in the Deparment of Computational and Data

Sciences at Indian Institute of Science during the years 2014-2016.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1





c© Suraj Srinivas

January, 2017

All rights reserved





Acknowledgements

Of all the people who have helped me during the course of my Master’s degree for the past two

years, I would first like to thank my advisor Dr. R. Venkatesh Babu. His deep intuition of the

subject matter, along with his penchant for empiricism have fundamentally shaped my views

on how research should be done.

My interest in Machine Learning stems from my wonderful experience in the course offered

by Dr. Shivani Agarwal. Her clarity of thought and presentation, combined with her enthusiasm

for the learning problem have had a profound impact on my research.

My time in IISc was memorable largely due to my association with the Video Analytics Lab.

I would like to thank all current and former lab-members, especially Reddy, Lokesh, Akshay,

Ravi, Srinivas, Nikita, Nithish, Shiv, Swami and Ram, for the endless stimulating discussions.

I am forever deeply indebted to my parents and my younger sister for their encouragement

and support throughout these years. They made sure I had nothing other than my research to

worry about.

Finally, the campus of IISc has featured as a prominent backdrop to my time here. I would

like to thank the Institute for providing and maintaining a peaceful green campus and an

atmosphere conducive to research.

i



Abstract

Deep Neural Networks (NNs) have recently emerged as the model of choice for a wide a range of

Machine Learning applications ranging from computer vision to speech recognition to natural

language processing and beyond. However, these models are also known for being large and

cumbersome, limiting their applicability to real-time and embedded applications. As a result,

it is desirable to compress these models to make them easier to store and process.

Training Neural Networks is often described as a kind of ‘black magic’, as successful training

requires setting the right hyper-parameter values (such as the number of neurons in a layer,

depth of the network, etc). It is often not clear what these values should be, and these decisions

often end up being either ad-hoc or driven through extensive experimentation. It would be

desirable to automatically set some of these hyper-parameters for the user so as to minimize

trial-and-error. Combining this objective with our earlier preference for smaller models, we

ask the following question - for a given task, is it possible to come up small neural network

architectures automatically?

In this thesis, we propose methods to achieve the same. Our contributions here are four-fold.

First, we describe a method that takes a pre-trained network model and performs compression

without using training data. Second, we perform compression and network training at the same

time, in a data-driven manner. We call this method ‘Architecture-Learning’. Third, we show

connections of Architecture-Learning with a popular regularizer called ‘Dropout’, and propose

the so-called ‘Generalized Dropout’ regularizer. Lastly, we apply the Architecture-Learning

methodology to sparsify neural networks, i.e.; remove weights to create sparse weight matrices.

Our methods are competitive with state-of-the-art methods that perform network compression,

and as well as those that perform architecture selection.

ii



Publications based on this Thesis

1. Suraj Srinivas and R. Venkatesh Babu, “Data-free Parameter Pruning for Deep Neural

Networks”. British Machine Vision Conference (BMVC) 2015 [45]

2. Suraj Srinivas and R. Venkatesh Babu, “Learning Neural Network Architectures using

Backpropagation”. British Machine Vision Conference (BMVC) 2016 [46]

3. Suraj Srinivas, Ravi Kiran Sarvadevabhatla, Konda Reddy Mopuri, Nikita Prabhu, Srini-

vas SS Kruthiventi, and R. Venkatesh Babu. “A Taxonomy of Deep Convolutional Neural

Nets for Computer Vision”. Frontiers in Robotics and AI 2 (2016): 36. [48]

4. Suraj Srinivas and R. Venkatesh Babu, “Generalized Dropout”, arXiv pre-print, arXiv:1611.06791

[47]

5. Suraj Srinivas, Akshay Varun and R. Venkatesh Babu, “Training Sparse Neural Net-

works”, arXiv pre-print, arXiv:1611.06694 [49]

iii



Contents

Acknowledgements i

Abstract ii

Publications based on this Thesis iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Computational Aspects of Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Non-linearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Why are CNNs large? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Compressing Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2.1 Special Case: Block Sparsification . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3.1 Binary Neural Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Data-free Neuron Pruning 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Wiring similar neurons together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



CONTENTS

2.3 The case of dissimilar neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Connection to Optimal Brain Damage . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Connection to Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Weight normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Some heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 How many neurons to remove? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Comparison with OBS and OBD . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Experiments on LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Experiments on AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Architecture Learning using Backpropagation 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Complexity as a regularizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 A Strategy for a trainable regularizer . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1.1 Definition: Tri-state ReLU . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1.2 Learning binary parameters . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Adding model complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Properties of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Proofs of Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Compression performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.3 Architecture Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.4 Case study: AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.5 A Note on Hyper-parameter selection . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Connection between Architecture Learning and Dropout 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Bayesian Neural Networks with Gates . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Generalized Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Architecture Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.4 A Practitioner’s Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.5 Estimating gradients for binary stochastic gates . . . . . . . . . . . . . . . . . . 44

v



CONTENTS

4.2.6 Applying to Convolution Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Analysis of Generalized Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1.1 Effect of data-size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1.2 Effect of Layer-width . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1.3 Effect of Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1.4 Visualization of Learnt Parameters . . . . . . . . . . . . . . . . . . . . 48

4.4.1.5 Architecture Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 Dropout++ on standard models . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Application: Training Sparse Neural Networks 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Gate Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Promoting Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 An Alternate Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.4 Relation to Spike-and-Slab priors . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.5 Estimating gradients for gate variables . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.6 Comparison with LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.7 Practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Analysis of Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1.1 Effect of hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.2 Compression Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion 63

Bibliography 65

vi



List of Figures

1.1 An illustration of the weights in the AlexNet model. Note that after every

layer, there is an implicit ReLU non-linearity. The number inside curly braces

represents the number of filters with dimensions mentioned above it. . . . . . . . 3

1.2 An Illustration of weight removal / sparsification in a Neural Network matrix . . 7

1.3 Removing Neurons in a Neural Network . . . . . . . . . . . . . . . . . . . . . . 8

1.4 An illustration of matrix factorization applied to a Neural Network layer . . . . 9

1.5 A schematic diagram of tensor decomposition. Image Credits: Kim et al. [27] . . 10

2.1 A toy example showing the effect of equal weight-sets (W1 = W4). The circles

in the diagram are neurons and the lines represent weights. Weights of the same

colour in the input layer constitute a weight-set. . . . . . . . . . . . . . . . . . . 14

2.2 (a) Scaled appropriately, the saliency curve closely follows that of increase in test

error ; (b) The histogram of saliency values. The black bar indicates the mode

of the gaussian-like curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Comparison of proposed approach with OBD and OBS. Our method is able to

prune many more weights than OBD/OBS at little or no increase in test error . 20

2.4 Comparison with and without surgery. Our method breaks down when surgery

is not performed. Note that the y-axis is the log of test error. . . . . . . . . . . 21

3.1 (a) Our strategy for selecting width and depth. Left: Grey blobs denote neurons,

coloured blobs denote the proposed additional trainable parameters. Right: Purple

bars denote weight-matrices. (b) Graph of the `2 regularizer and the binarizing regu-

larizer in 1-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 (a) Plot of the architecture learnt against the number of iterations. We see that λ1

affects convergence rate while λ3 affects amount of pruning. (b) Plot of the no. of

neurons learnt for MNIST with various number of classes. We see that both the neuron

count and the error rate increase with increase in number of classes. . . . . . . . . . 35

vii



LIST OF FIGURES

3.3 (a) Comparison against Bayesian Optimization for the case of learning the width of

only third layer. (b) Similar comparison for learning the widths of all three layers.

(λ = 10−5 in both cases) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 (a) An illustration of the proposed method with binary stochastic multiplicative

gates. Here, W refers to weights and θ refers to gates. Note that P (θ = 1) = k.

(b) Behaviour of the beta distribution at different values of α, β. . . . . . . . . . 42

4.2 (a, b) All Dropout++ methods perform on par with Dropout on large data,

and Dropout++ (0) seems to work better on small data. (c, d) Dropout++

can adapt to different layer sizes and result in optimal performance. (e, f)

Initialization of Dropout++ parameters is not very crucial. As a result, one can

initialize favourably to drastically increase training speed. (g, h) Dropout++ on

convolutional layers learns to selectively attend to parts of the image, rather than

the full image. (i) SAL and Dropout++ (0) are best suited for gate pruning,

with SAL being better for automated pruning given the steep slope. . . . . . . 46

5.1 Our strategy for sparsifying weight matrices. First, we sample / threshold the gate

variables. We then multiply the resulting binary matrix with W , to yield a sparse

matrix W s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 (a) The bi-modal regularizer used in our work. Note that this encourages values

to be close to 0 and 1, in contrast to the `2 regularizer. (b) An example of a

spike-and-slab prior similar to the one used in this work (except for a constant). 54

5.3 (a) We vary the initialization of the gate variables and observe it’s effect on

sparsity. The dotted blue lines denote the variance of sparsity in case of the

sampling-based method. (b) λ1 seems to have a stabilizing effect on sparsity

whereas (c) increasing λ2 seems to increase sparsity. . . . . . . . . . . . . . . . . 57

viii



List of Tables

1.1 Computational demands of convolutional layers vs fully connected layers in mod-

ern neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The numbers represent accuracies in (%) of the models on a test set. ‘Naive

method’ refers to removing neurons based on magnitude of weights. The baseline

model with 500 neurons had an accuracy of 99.06%. The highlighted values (in

red) are those predicted for cutoff by our cut-off selection methods. . . . . . . . 21

2.2 Compression results for CaffeNet. The first two columns denote the number of

neurons pruned in each of the FC6 and FC7 layers. The validation accuracy of

the unpruned CaffeNet was found to be 57.84%. Note that it has 60.9M weights

in total. The numbers in red denote the best performing models, and those in

blue denote the numbers predicted by our data-free cutoff selection method. . . 22

3.1 Architecture learning performance of our method on a LeNet-like baseline. The Layers

Learnt column has binary elements (w, d) which denotes whether width(w) or depth(d)

are learnt for each layer in the baseline network. AL = Architecture Learning, NN =

Neural Network trained w/o AL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Comparison of compression performance of proposed method against SVD-based weight-

matrix compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Performance of the proposed method on networks of increasing depth. . . . . . . . . 35

3.4 Compression performance on CaffeNet. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Architectures learnt by our method whose performance is given in Table 3.4. . . . . . 37

4.1 Architecture selection capability of our method on a LeNet-like baseline. The

first row is the architecture and performance of the baseline LeNet network.

We see that larger β/α ratios result in smaller networks at the cost of network

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



LIST OF TABLES

4.2 Applying Dropout++ after each layer in standard networks decreases error rate

(%). Dropout++ learnt values (with init = 1.0) are close to 0.98. As a result,

Dropout at p = 0.98 performs similar to this learnt value. With Dropout++ init

= 0.5, the learnt values are close to p = 0.8. . . . . . . . . . . . . . . . . . . . . 48

5.1 Compression results for LeNet-5 architecture. . . . . . . . . . . . . . . . . . . . 58

5.2 Comparison of compression performance on LeNet-5 architecture. *Count of

number of parameters and the indices to store them. This is the effective storage

requirement when using sparse computations. . . . . . . . . . . . . . . . . . . . 59

5.3 Layer-wise compression performance on AlexNet . . . . . . . . . . . . . . . . . . 59

5.4 Layer-wise compression performance on VGG-16 . . . . . . . . . . . . . . . . . . 60

5.5 Effect of λ parameters on sparsity. [T] denotes the threshold-based method,

while [S] denotes that sampling-based method. . . . . . . . . . . . . . . . . . . . 60

5.6 Comparison of compression performance on AlexNet architecture . . . . . . . . 61

5.7 Comparison of compression performance on VGG-16 architecture . . . . . . . . 61

x



Chapter 1

Introduction

The human brain is surprisingly small for the amount of sophisticated computation it performs.

Attempts at simulating brain activities usually require massive supercomputers that need sev-

eral kilowatts of power. This has been a constant feature of most Machine Learning models

as well - models that perform well are often unusually large. This holds true even for the case

of deep neural networks, where typical models are often over-parametrized to facilitate easier

training. This paradigm of using large models has been largely fuelled by the availability of

massively parallel GPUs (Graphics Processing Units). Without GPUs, training time would in-

crease from a few days to a few months, making it infeasible to train large models with million

of parameters. Further, inference time would also increase from a fraction of a second to a few

seconds. This makes it difficult to deploy large models on small embedded devices and have

real-time inference. This reliance of Deep Neural Networks on GPUs is deeply unsatisfactory.

We can tackle this problem in two ways. The first approach is to build specialized hardware

suited to Deep Neural Networks. This can take advantage of Neural Network structure to

achieve low power and fast computation. Alternately, we can build smaller models with similar

performance and a smaller computational load, so that these models can now run efficiently on

the available embedded hardware. In this thesis, we broadly look at the second approach. In

modern Deep Learning literature, this is also referred to as the problem of Model Compression.

Given our premise, one can naturally ask - if smaller models can work just as well as large

ones, wouldn’t researchers and engineers use them to begin with? While this is indeed true,

unfortunately it is not easy to identify which of these small models perform well. In other words,

it is difficult to search over the space of possible architectures to determine a good candidate

architecture. Once a suitable neural network structure is identified, it is relatively simple to

train that network and achieve good performance. This is indeed one of the broad goals of this

thesis - to identify small architectures which work just as well as large ones.

1



In this Introductory chapter, we provide some background material which serve as context

for the thesis. This chapter is divided into two parts. First, we briefly introduce Deep Neural

Networks and the computational aspects associated with them. Second, we look at some

possible ways to re-parameterize Neural Networks so that it is easy to identify small, but well-

performing models.

1.1 Computational Aspects of Deep Neural Networks

Convolutional Neural Networks (CNNs) have largely taken over Computer Vision in recent

times. In this section, we introduce these CNNs from a computational perspective. We assume

that the reader is largely familiar with traditional neural networks, which we shall call “fully

connected layers” in this thesis. The content in this section is largely adapted from a part of

our survey article on CNNs for vision [48].

The idea of a Convolutional Neural Network (CNN) is not new. These models had been

shown to work well for hand-written digit recognition [32]. However, due to the inability of

these networks to scale to much larger images, they slowly fell out of favour. This was largely

due to memory and hardware constraints, and the unavailability of large amounts of training

data. With increase in computational power thanks to wide availability of GPUs, and the

introduction of large scale datasets like the ImageNet (see [41]) and the MIT Places dataset

(see [55]), it was possible to train larger, more complex models. This was first shown by the

popular AlexNet model which was discussed earlier. This largely kick-started the usage of deep

networks in computer vision. Figure 1.1 shows a representation of the weights in the AlexNet

model. While the first five layers are convolutional, the last three are fully connected layers.

1.1.1 Fully Connected Layers

Traditional neural network layers perform matrix multiplication on a vector x to produce an-

other vector y = f(Wx+ b), where W is a matrix and b is a scalar, also called the bias. Here,

f(·) is an elementwise non-linearity. We refer to these layers as fully connected layers. If x is

the input data, then y is generally called the vector of activations or neural activations. The

length of the vector y is usually referred to as the width of that layer. Each element in W is a

weight, while an entire row is typically called a neuron.

Neurons are generally more interpretable than weights. While individual weights simply

denote the ‘strength of connection’ between the input and output, neurons represent basis

functions or features extracted by the network.

2



Figure 1.1: An illustration of the weights in the AlexNet model. Note that after every layer,
there is an implicit ReLU non-linearity. The number inside curly braces represents the number
of filters with dimensions mentioned above it.

1.1.2 Convolutional Layers

Using traditional neural networks for real-world image classification is impractical for the fol-

lowing reason: Consider a 2D image of size 200 × 200 for which we would have have 40, 000

input nodes. If the hidden layer has 20, 000 nodes, the size of the matrix of input weights would

be 40, 000×20, 000 = 800 Million. This is just for the first layer – as we increase the number of

layers, this number increases even more rapidly. Besides, vectorizing an image completely ig-

nores the complex 2D spatial structure of the image. How do we build a system that overcomes

both these disadvantages?

One way is to use 2D convolutions instead of matrix multiplications. Learning a set of

convolutional filters (each of 11× 11, say) is much more tractable than learning a large matrix

(40000× 20000). 2D convolutions also naturally take the 2D structure of images into account.

Alternately, convolutions can also be thought of as regular neural networks with two constraints

(See [6]):

• Local connectivity: This comes from the fact that we use a convolutional filter with

dimensions much smaller than the image it operates on. This contrasts with the global

connectivity paradigm typically relevant to vectorized images.

• Weight sharing: This comes from the fact that we perform convolutions, i.e. we apply

the same filter across the image. This means that we use the same local filters on many

locations in the image. In other words, the weights between all these filters are shared.

3



In practical CNNs however, the convolution operations are not applied in the traditional

sense wherein the filter shifts one position to the right after each multiplication. Instead, it is

common to use larger shifts (commonly referred to as stride). This is equivalent to performing

image down-sampling after regular convolution.

If we wish to train these networks on RGB images, one would need to learn multiple multi-

channel filters. In the representation in Figure 1.1, the numbers 11× 11× 3, along with {96}
below C1 indicates that there are 96 filters in the first layers, each of spatial dimension of

11× 11, with one for each of the 3 RGB channels.

We note that this paradigm of convolution like operations (location independent feature-

detectors) is not entirely suitable for registered images. As an example, images of faces require

different feature-detectors at different spatial locations. To account for this, [52] consider only

locally-connected networks with no weight-sharing. Thus, the choice of layer connectivity de-

pends on the underlying type of problem.

In modern deep neural networks such as AlexNet, convolutional layers typically perform

more number of operations compared to fully connected layers. This is primarily because con-

volutions need to be performed over large images - which requires a large amount of multiply-add

operations. However, these layers are typically parameter efficient, as the size of convolutional

kernels are very small (11 × 11) compared to the image size (224 × 224). In contrast, fully

connected layers are usually applied at a stage where significant dimensionality reduction is al-

ready done. As a result, these layers end up being relatively fast to compute. However, because

of the inefficiency of such generic layers, they contain much larger number of parameters when

compared to convolutional layers. This is shown in Table 1.1.

Inference Speed Number of parameters

Convolutional Layer Slow Low

Fully Connected Layer Fast High

Table 1.1: Computational demands of convolutional layers vs fully connected layers in modern
neural networks.

1.1.3 Non-linearities

Deep networks usually consist of convolutions followed by a non-linear operation after each

layer. This is necessary because cascading linear systems (like convolutions) is another linear

4



system. Non-linearities between layers ensure that the model is more expressive than a linear

model.

Traditional feedforward neural networks used the sigmoid (σ(x) = 1
1+e−x ) or the tanh

(tanh(x) = ex−e−x

ex+e−x ) non-linearities. However, modern convolutional networks use the ReLU

(ReLU(x) = max(0, x)) non-linearity. CNNs with this non-linearity have been found to train

faster, as shown by [37]. In addition, these non-linearities require negligible amount of compu-

tation, as these are simply element-wise operations.

Another kind of non-linearity typically used in deep networks is that of pooling, which is

used in conjunction with convolutional layers. The most common form of pooling is max-

pooling. This operation can be thought of as a max filter, where each n× n region is replaced

with it’s max value. This operation serves two purposes:

1. It picks out the highest activation in a local region, thereby providing a small degree of

spatial invariance. This is analogous to the operation of complex cells.

2. It reduces the size of the activation for the next layer by a factor of n2. With a smaller

activation size, we need a smaller number of parameters to be learnt in the later layers.

When designing neural networks, placement of these max-pooling layers are often critical.

If too much max pooling is used, performance suffers, while too little a max pooling results in

an explosion of the number of parameters.

1.1.4 Why are CNNs large?

Modern Deep Networks such as AlexNet [29] and VGGNet [42] contain 60 Million and 138

Million parameters respectively. This takes up a lot of storage space - 220+ and 500+ MB

respectively. As pointed out in Table 1.1, most of these parameters lie in fully-connected (FC)

layers. As a result, it is natural to ask - are large FC layers really necessary? Indeed, GoogleNet

[51] uses much smaller FC layers (and cleverly-designed ‘inception’ layers) to avoid parameter

explosion.

In general, architecture design decisions are often arbitrary - they are mainly decided keeping

in mind computational considerations rather than concerns regarding parsimony of representa-

tion. Large, over-parameterized neural networks have been found to generalize better for large

datasets. Given that CNNs take a long time of train, it is lucrative to use large networks to

obtain good results immediately. However, this mode of working is deeply unsatisfactory - it is

unclear where there exists smaller CNNs that work just as well. This is the primary focus of

this thesis - to design methods that automatically discover such small CNNs.

5



1.2 Compressing Neural Networks

We shall now describe some popular ways to compress deep neural networks so that one can

optimize for either the parameter count or the number of operations.

1.2.1 Distillation

The term Model Compression was first used by Bucilua et al. [8] back in 2006. They described

a method to compress a large ensemble of models (not necessarily neural networks) to a single

compact model that can be used at test time. A similar idea was explored by Hinton et al. [24]

for neural network compression, who used the term Knowledge Distillation (KD). The overall

idea behind KD is to leverge the so-called knowledge acquired by training a large network to

train a smaller network. It has been shown that this is advantageous to having the smaller

model learn from scratch.

Neural Networks compute class probabilites using the softmax function, which is defined as

follows.

qi =
exp(zi)∑
i exp(zi)

(1.1)

Here, zi denotes the ith output class of the neural network in a classification problem, and

qi denotes the softmax output. This softmax output is always between 0 and 1, denoting a

probability distribution over classes. Typically, one computes cross-entropy error of the true

label with the softmax output for training the network.

However, one problem with the softmax output distribution q = {q1, q2, ...qi, ...} is that it

usually places a lot of mass (close to 1) to one of the qi’s and close to zero mass to all other

q’s. In other words, softmax is a ‘soft’ way of choosing the maximum of many numbers. This

transformation of z’s into q’s preserves only the label information and not much else. We require

a transform that provides additional information about z as well. To facilitate this, we use the

following transform.

qi =
exp(zi/T )∑
i exp(zi/T )

(1.2)

Here, T is a scalar value called ‘Temperature’. Using T > 1 produces a softer probability

distribution over classes than regular softmax. For example, if the input to an image classifica-

tion network is the image of a car, the softmax outputs peak at ‘car’ and are close to zero for

all other classes. However, if we consider the temperature softened softmax, the probability qi

is maximum for ‘car’, but it is also high for related classes such as ‘truck’, ‘train’, while being

6



Figure 1.2: An Illustration of weight removal / sparsification in a Neural Network matrix

low for unrelated classes like ‘dog’ and ‘cat’. The idea behind Knowledge Distillation is to use

such softened labels from a large network for training a smaller network.

To perform Knowledge Distillation, we first train a large network. Let it’s temperature

softened softmax outputs be QT
l . Let the softened output for the untrained smaller network be

QT
s . Let the usual softmax output for smaller network be denoted by Qs. We now train the

smaller network with the following loss function.

Loss = λ1`(Qs, Y ) + λ2`(Q
T
s , Q

T
l ) (1.3)

Here, `(·) denotes the cross-entropy loss function. Note that here we use both the regular

softmax loss (first term) and the softened hints provided by the larger network (second term).

The advantage of this method is that it is applicable to any two neural networks, irrespective

of their architectures. However, a practical disadvantage of this method is that this behaviour

has not been shown to scale up to larger networks trained on Imagenet-like datasets.

1.2.2 Sparsification

Neural Networks typically consist of operations such as dense convolutions and dense matrix

multiplications. Would using sparse matrix multiplications and convolutions be more efficient?

This is the objective of sparsifying neural networks, shown in Figure 1.2.

To use these, we require that majority of the parameters or weights in a neural network

be zero. To encourage this, Collins and Kohli [11] use sparsity inducing priors on the weight

matrix. This is done by projecting onto `0 balls after each gradient computation. This is

identical to performing the so-called projected gradient descent with the constraint on the `0

norm of weights. In practice, this is done by repeatedly hard-thresholding all but the top-t

weights (in terms of magnitude) after each iteration.

Han et al. [18] use a similar strategy. However, instead of a monolithic training step, they

alternate between training and pruning. That is, pruning is not performed at every iteration,

but is performed only once after several epochs. Using this strategy, they prune AlexNet by

7



Figure 1.3: Removing Neurons in a Neural Network

upto 9× and obtain 3× speedup. This method is currently among the state-of-the-art methods

for minimizing parameter count.

One disadvantage of this approach is that practical implementation requires support for

sparse matrix multiplications and convolutions. Further, these provide significant speedups

only when the sparsity level is sufficiently high (> 90%).

1.2.2.1 Special Case: Block Sparsification

Rather than dropping arbitrary weights, we may instead choose to drop a set of weights that

constitute a neuron / feature detector, as shown in Figure 1.3. This method is advantageous

over the earlier method in that this does not require support for sparse matrix multiplication

or convolution. In other words, we retain the canonical structure of the neural network while

reducing the model size. However, this method has a disadvantage in that significantly lower

number of weights can be pruned because of the extra constraint of removing a whole set. In

this thesis, we mainly look at methods to perform block sparsification.

1.2.3 Quantization

Weights in neural networks are usually stored as 32-bit floating point numbers. However,

some recent works have found that reduced precision can also be used for inference. In the

same spirit, there emerged many works which performed clever non-linear quantization of the

weights. However, these are very difficult to implement in general purpose hardware. Here we

shall briefly discuss the special case of binary neural networks, which are easier to deploy.

1.2.3.1 Binary Neural Nets

There exist several attempts at creating binary neural nets, however, most of them do not scale

to large datasets. Here, we shall briefly discuss ‘XNOR-Net’ [39], which has been shown to

work for large CNNs such as AlexNet.

Here, we shall only attempt explaining the method for fully-connected layers, as the method

for convolutional layers is slight more involved. First, the paper introduces a method to obtain

8



Figure 1.4: An illustration of matrix factorization applied to a Neural Network layer

binary weights. Given a weight matrix W , we obtain a binary matrix B by optimizing the

following.

B∗, α∗ = argminB,α‖W − αB‖2 (1.4)

The solution to this is to simply set B = sign(W ) and α = ‖W‖1
‖W‖0 . Similarly, to binarize

both weights and activations, we use the following objective function.

B∗,H∗, α∗, β∗ = argminB,H,α,β‖WTX− αβBTH‖2 (1.5)

Here, H is the binarized version of X, the real-valued input variable. This objective function

is solved by decomposing it into two binarization problems, each of the form of Equation 1.4.

Using this form of binarization, Rastegari et al. [39] report 58× increase in inference speed

with a 32× compression. However, they suffer a 12% loss in accuracy over the AlexNet baseline.

1.2.4 Factorization

If we assume that neural network weights are redundant, it is reasonable to expect them to

have a low-rank structure. In case of fully connected layers, it was observed [54] that such a

low-rank structure indeed exists. By re-arranging the matrix in terms of it’s singular vectors,

it is possible to create a bottleneck layer with very few parameters.

Kim et al. [27] make the astute observation that similar to using matrix decompositions for

fully connected layers, one can similarly use tensor decompositions to compress convolutional

layers.

There are two popular ways to perform tensor decomposition:

• CP or CANDECOMP/PARAFAC decomposition: This extends the notion of spectral

decomposition of matrices. For tensors, this decomposes a tensor into sum of ‘k’ rank-1

tensors, where ‘k’ is equivalent to the rank of the tensor.

• Tucker decomposition: Here the tensor is broken into a series of matrices and one small

9



‘core’ matrix.

In terms of practical implementation, Tucker decomposition is much more attractive as

it is more stable. The decomposition is done so that we re-use structures which are already

accelerated by low-level GPU libraries.

Figure 1.5: A schematic diagram of tensor decomposition. Image Credits: Kim et al. [27]

In particular, Kim et al. [27] use a Tucker-2 decomposition, which involves decomposing a

4-tensor into 2 matrices and one small ‘core’ tensor. Simply put, the first layer decreases the

number of channels and the last layer increases it to the original number. The second ‘core’

tensor in effect performs convolution with reduced number of input and output filters. This is

summarized by figure 1.5.

The advantages of this method is identical to that of neuron pruning / block sparsification -

this preserves the canonical structure of the neural network, and does not require any specialized

matrix operations to be implemented. However, one potential disadvantage of this method

over block sparsification is that it artificially increases the number of processing stages, or the

apparent depth, which can potentially increase inference time.

1.3 Outline of the thesis

The main focus on this thesis is to develop methods that perform block sparsification. As

this task keeps the canonical structure of neural network intact, this can also be thought of as

selecting the number of neurons in a layer. The thesis is organized as follows.

1. Data-free Neuron Pruning: Chapter 2 begins our investigation into neural network

redundancy and asks the question - is it possible to remove neurons from a network

without having access to the data it was trained on? The answer, surprisingly, is yes. We

show that this pruning can happen without significantly affecting predictive performance.

This exposes the significant redundancy that exists in neural networks after training.

10



2. Architecture Learning using Backpropagation: In Chapter 3, we design a data-

driven method to remove neurons. This is integrated as a part of the training process.

We call this method ‘Architecture Learning ’, as this learns both the architecture and

weights in a single optimization framework. Experiments show that simply finding the

smallest architecture is competitive with more sophisticated model compression methods.

3. Connection with Dropout: The Architecture Learning algorithm is reminiscent of

Dropout - in both cases neurons are removed in the training process. Does there exist a

deeper relationship between these two approaches? Chapter 4 answers this question in the

affirmative. We consider a stochastic version of Architecture Learning called Stochastic

Architecture Learning (SAL). We show that SAL and Dropout belong to a much larger

family of regularizers which we call Generalized Dropout. Other members of this family

include adaptive versions of Dropout, which we call Dropout++. These regularizers are

derived using a Bayesian framework based on Variational Inference.

4. Application on Training Sparse Networks: We apply the methods developed in

the previous chapters to the task of removing weights in a neural network rather than

neurons. Chapter 5 contains the details of this method. In addition to this, we also

make connections of our method to Spike-and-Slab priors, and stochastic optimization.

Experiments show that this method is competitive with state-of-the-art weight pruning

methods.

11



Chapter 2

Data-free Neuron Pruning

I have made this letter longer than usual, only because I have not had the time to make it

shorter 1 - Blaise Pascal

2.1 Introduction

Aspiring writers are often given the following advice: produce a first draft, then remove un-

necessary words and shorten phrases whenever possible. Can a similar recipe be followed while

building deep networks? For large-scale tasks like object classification, the general practice

[29, 42, 51] has been to use large networks with powerful regularizers [50]. This implies that

the overall model complexity is much smaller than the number of model parameters. A smaller

model has the advantage of being faster to evaluate and easier to store - both of which are

crucial for real-time and embedded applications.

Given such a large network, how do we make it smaller? A naive approach would be

to remove weights which are close to zero. However, this intuitive idea does not seem to

be theoretically well-founded. LeCun et al. proposed Optimal Brain Damage (OBD) [31], a

theoretically sound technique which they showed to work better than the naive approach. A

few years later, Hassibi et al. came up with Optimal Brain Surgeon (OBS) [19], which was

shown to perform much better than OBD, but was much more computationally intensive. This

line of work focusses on pruning unnecessary weights in a trained model.

There has been another line of work in which a smaller network is trained to mimic a much

larger network. Bucila et al. [8] proposed a way to achieve the same - and trained smaller

models which had accuracies similar to larger networks. Ba and Caruna [2] used the approach

to show that shallower (but much wider) models can be trained to perform as well as deep

1Loosly translated from French

12



models. Knowledge Distillation (KD) [24] is a more general approach, of which Bucila et al.

’s is a special case. FitNets [40] use KD at several layers to learn networks which are deeper

but thinner (in contrast to Ba and Caruna’s shallow and wide), and achieve high levels of

compression on trained models.

Many methods have been proposed to train models that are deep, yet have a lower pa-

rameterisation than conventional networks. Collins and Kohli [11] propose a sparsity inducing

regulariser for backpropogation which promotes many weights to have zero magnitude. They

achieve reduction in memory consumption when compared to traditionally trained models. De-

nil et al. [12] demonstrate that most of the parameters of a model can be predicted given only

a few parameters. At training time, they learn only a few parameters and predict the rest.

Ciresan et al. [10] train networks with random connectivity, and show that they are more

computationally efficient than densely connected networks.

Some recent works have focussed on using approximations of weight matrices to perform

compression. Jenderberg et al. [25] and Denton et al. [13] use SVD-based low rank approxima-

tions of the weight matrix. Gong et al. [16], on the other hand, use a clustering-based product

quantization approach to build an indexing scheme that reduces the space occupied by the

matrix on disk. Unlike the methods discussed previously, these do not need any training data

to perform compression. However, they change the network structure in a way that prevents

operations like fine-tuning to be done easily after compression. One would need to ‘uncompress’

the network, fine-tune and then compress it again.

Similar to the methods discussed in the paragraph above, our pruning method doesn’t need

any training/validation data to perform compression. Unlike these methods, our method merely

prunes parameters, which ensures that the network’s overall structure remains same - enabling

operations like fine-tuning on the fly. The following section explains this in more detail.

2.2 Wiring similar neurons together

Given the fact that neural nets have many redundant parameters, how would the weights

configure themselves to express such redundancy? In other words, when can weights be removed

from a neural network, such that the removal has no effect on the net’s accuracy?

Suppose that there are weights which are exactly equal to zero. It is trivial to see that these

can be removed from the network without any effect whatsoever. This was the motivation for

the naive magnitude-based removal approach discussed earlier.

In this work we look at another form of redundancy. Let us consider a toy example of a

NN with a single hidden layer, and a single output neuron. This is shown in figure 2.1. Let

W1,W2, ... ∈ Rd be vectors of weights (or ‘weight-sets’) which includes the bias terms, and

13



Figure 2.1: A toy example showing the effect of equal weight-sets (W1 = W4). The circles in
the diagram are neurons and the lines represent weights. Weights of the same colour in the
input layer constitute a weight-set.

a1, a2, ... ∈ R be scalar weights in the next layer. Let X ∈ Rd denote the input, with the bias

term absorbed. The output is given by

z = a1h(W T
1 X) + a2h(W T

2 X) + a3h(W T
3 X) + ...+ anh(W T

n X) (2.1)

where h(·) is a monotonically increasing non-linearity, such as sigmoid or ReLU.

Now let us suppose that W1 = W2. This means that h(W T
1 X) = h(W T

2 X). Replacing W2

by W1 in (2.1), we get

z = (a1 + a2)h(W T
1 X) + 0 h(W T

2 X) + a3h(W T
3 X) + ...+ anh(W T

n X)

This means whenever two weight sets (W1,W2) are equal, one of them can effectively be

removed. Note that we need to alter the co-efficient a1 to a1 + a2 in order to achieve this. We

shall call this the ‘surgery ’ step. This reduction also resonates with the well-known Hebbian

principle, which roughly states that “neurons which fire together, wire together”. If we find

neurons that fire together (W1 = W2), we wire them together (a1 = a1 + a2). Hence we see

here that along with single weights being equal to zero, equal weight vectors also contribute

to redundancies in a NN. Note that this approach assumes that the same non-linearity h(·) is

used for all neurons in a layer.

2.3 The case of dissimilar neurons

Using the intuition presented in the previous section, let us try to formally derive a process to

eliminate neurons in a trained network. We note that two weight sets may never be exactly

equal in a NN. What do we do when ‖W1 −W2‖ = ‖ε1,2‖ ≥ 0 ? Here εi,j = Wi −Wj ∈ Rd.

14



As in the previous example, let zn be the output neuron when there are n hidden neurons.

Let us consider two similar weight sets Wi and Wj in zn and that we have chosen to remove

Wj to give us zn−1.

We know that the following is true.

zn = a1h(W T
1 X) + ...+ aih(W T

i X) + ...+ ajh(W T
j X) + ...

zn−1 = a1h(W T
1 X) + ...+ (ai + aj)h(W T

i X) + ...

If Wi = Wj (or εi,j = 0), we would have zn = zn−1. However, since ‖εi,j‖ ≥ 0, this need not

hold true. Computing the squared difference (zn − zn−1)2, we have

(zn − zn−1)2 = a2
j(h(W T

j X)− h(W T
i X))2 (2.2)

To perform further simplification, we use the following Lemma.

Lemma 1 Let a, b ∈ R and h(·) be a monotonically increasing function,

such that max
(

dh(x)
dx

)
≤ 1,∀x ∈ R. Then,

(h(a)− h(b))2 ≤ (a− b)2

The proof for this is provided in the Appendix. Note that non-linearities like sigmoid and

ReLU [29] satisfy the above property. Using the Lemma and (2.2), we have

(zn − zn−1)2 ≤ a2
j (εTi,jX)2

This can be further simplified using Cauchy-Schwarz inequality.

(zn − zn−1)2 ≤ a2
j ‖εi,j‖2

2 ‖X‖2
2

Now, let us take expectation over the random variable X on both sides. Here, X is assumed

to belong to the input distribution represented by the training data.

E(zn − zn−1)2 ≤ a2
j ‖εi,j‖2

2 E‖X‖2
2

Note that E‖X‖2
2 is a scalar quantity, independent of the network architecture. Given the

above expression, we ask which (i, j) pair least changes the output activation. To answer this,

15



we take minimum over (i, j) on both sides, yielding

min(E(zn − zn−1)2) ≤ min(a2
j ‖εi,j‖2

2) E‖X‖2
2 (2.3)

To minimize an upper bound on the expected value of the squared difference, we thus need

to find indicies (i, j) such that a2
j ‖εi,j‖2

2 is the least. Note that we need not compute the value of

E‖X‖2
2 to do this - making it dataset independent. Equation (2.3) takes into consideration both

the naive approach of removing near-zero weights (based on a2
j) and the approach of removing

similar weight sets (based on ‖εi,j‖2
2).

The above analysis was done for the case of a single output neuron. It can be trivially

extended to consider multiple output neurons, giving us the following equation

min(E〈(zn − zn−1)2〉) ≤ min(〈a2
j〉 ‖εi,j‖2

2) E‖X‖2
2 (2.4)

where 〈·〉 denotes the average of the quantity over all output neurons. This enables us to

apply this method to intermediate layers in a deep network. For convenience, we define the

saliency of two weight-sets in (i, j) as si,j = 〈a2
j〉 ‖εi,j‖2

2.

We elucidate our procedure for neuron removal here:

1. Compute the saliency si,j for all possible values of (i, j). It can be stored as a square

matrix M , with dimension equal to the number of neurons in the layer being considered.

2. Pick the minimum entry in the matrix. Let it’s indices be (i′, j′). Delete the j′th neuron,

and update ai′ ← ai′ + aj′ .

3. Update M by removing the j′th column and row, and updating the i′th column (to account

for the updated ai′ .)

The most computationally intensive step in the above algorithm is the computation of the

matrix M upfront. Fortunately, this needs to be done only once before the pruning starts, and

only single columns are updated at the end of pruning each neuron.

2.3.1 Connection to Optimal Brain Damage

In the case of toy model considered above, with the constraint that only weights from the

hidden-to-output connection be pruned, let us analyse the OBD approach.

The OBD approach looks to prune those weights which have the least effect on the train-

ing/validation error. In contrast, our approach looks to prune those weights which change the

output neuron activations the least. The saliency term in OBD is sj = hjja
2
j/2, where hii is the

16



ith diagonal element of the Hessian matrix. The equivalent quantity in our case is the saliency

si,j = a2
j‖εij‖2

2. Note that both contain a2
j . If the change in training error is proportional to

change in output activation, then both methods are equivalent. However, this does not seem

to hold in general. Hence it is not always necessary that the two approaches remove the same

weights.

In general, OBD removes a single weight at a time, causing it to have a finer control

over weight removal than our method, which removes a set of weights at once. However, we

perform an additional ‘surgery’ step (ai ← ai+aj) after each removal, which is missing in OBD.

Moreover, for large networks which use a lot of training data, computation of the Hessian matrix

(required for OBD) is very heavy. Our method provides a way to remove weights quickly.

2.3.2 Connection to Knowledge Distillation

Hinton et al. [24] proposed to use the ‘softened’ output probabilities of a learned network for

training a smaller network. They showed that as T → ∞, their procedure converges to the

case of training using output layer neurons (without softmax). This reduces to Bucila et al. ’s

[8] method. Given a larger network’s output neurons zl and smaller network’s neurons zs, they

train the smaller network so that (zl − zs)2 is minimized.

In our case, zl corresponds to zn and zs to zn−1. We minimize an upper bound on

E((zl − zs)2), whereas KD exactly minimizes (zl − zs)2 over the training set. Moreover, in the

KD case, the minimization is performed over all weights, whereas in our case it is only over the

output layer neurons. Note that we have the expectation term (and the upper bound) because

our method does not use any training data.

2.3.3 Weight normalization

In order for our method to work well, we need to ensure that we remove only those weights

for which the RHS of (2.3) is small. Let Wi = αWj, where α is a positive constant (say 0.9).

Clearly, these two weight sets compute very similar features. However, we may not be able to

eliminate this pair because of the difference in magnitudes. We hence propose to normalise all

weight sets while computing their similarity.

Result 1 For the ReLU non-linearity, defined by max(0, ·), and for any α ∈ R+ and any

x ∈ R, we have the following result:

max(0, αx) = α max(0, x)

Using this result, we scale all weight sets (W1,W2, ...) such that their norm is one. The α

17



factor is multiplied with the corresponding co-efficient in the next layer. This helps us identify

better weight sets to eliminate.

2.3.4 Some heuristics

While the mathematics in the previous section gives us a good way of thinking about the

algorithm, we observed that certain heuristics can improve performance.

The usual practice in neural network training is to train the bias without any weight decay

regularization. This causes the bias weights to have a much higher magnitude than the non-bias

weights. For this reason, we normalize only the non-bias weights. We also make sure that the

similarity measure ε takes ‘sensible-sized’ contributions from both weights and biases. This is

accomplished for fully connected layers as follows.

Let W = [W ′ b], and let W ′
(n) correspond to the normalized weights. Rather than using

‖εi,j‖ = ‖Wi −Wj‖, we use ‖εi,j‖ =
‖W ′

(n)i −W ′
(n)j‖

‖W ′
i +W ′

j‖
+
|bi − bj|
|bi + bj|

.

Note that both are measures of similarity between weight sets. We have empirically found

the new similarity measure performs much better than just using differences. We hypothesize

that this could be a tighter upper bound on the quantity E((zn − zn−1)2).

Similar heuristics can be employed for defining a similarity term for convolutional layers.

In this work, however, we only consider fully connected layers.

2.4 How many neurons to remove?

One way to use our technique would be to keep removing neurons until the test accuracy

starts going below certain levels. However, this is quite laborious to do for large networks with

multiple layers.

We now ask whether it is possible to somehow determine the number of removals automat-

ically. Is there some indication given by removed weights that tell us when it is time to stop?

To investigate the same, we plot the saliency si,j of the removed neuron as a function of the

order of removal. For example, the earlier pruned neurons would have a low value of saliency

si,j, while the later neurons would have a higher value. The red line in Figure 2.2(a) shows

the same. We observe that most values are very small, and the neurons at the very end have

comparatively high values. This takes the shape of a distinct exponential-shaped curve towards

the end.

One heuristic would probably be to have the cutoff point near the foot of the exponential

curve. However, is it really justified? To answer the same, we also compute the increase in

test error (from baseline levels) at each stage of removal (given by the blue line). We see that

18



the error stays constant for the most part, and starts increasing rapidly near the exponential.

Scaled appropriately, the saliency curve could be considered as a proxy for the increase in

test error. However, computing the scale factor needs information about the test error curve.

Instead, we could use the slope of saliency curve to estimate how densely we need to sample

the test error. For example, fewer measurements are needed near the flatter region and more

measurements are needed near the exponential region. This would be a data-driven way to

determine number of neurons to remove.

(a) (b)

Figure 2.2: (a) Scaled appropriately, the saliency curve closely follows that of increase in test
error ; (b) The histogram of saliency values. The black bar indicates the mode of the gaussian-
like curve.

We also plot the histogram of values of saliency. We see that the foot of the exponential

(saliency ≈ 1.2) corresponds to the mode of the gaussian-like curve (Figure 2.2(b)). If we require

a data-free way of finding the number of neurons to remove, we simply find the saliency value

of the mode in the histogram and use that as cutoff. Experimentally, we see that this works

well when the baseline accuracy is high to begin with. When it is low, we see that using this

method causes a substantial decrease in accuracy of the resulting classifier. In this work, we

use fractions (0.25, 0.5, etc) of the number given by the above method for large networks. We

choose the best among the different pruned models based on validation data. A truly data-free

method, however, would require us to not use any validation data to find the number of neurons

to prune. Note that only our pruning method is data-free. The formulation of such a complete

data-free method for large networks demands further investigation.

19



2.5 Experiments and Results

In most large scale neural networks [29, 42] , the fully connected layers contain most of the pa-

rameters in the network. As a result, reducing just the fully connected layers would considerably

compress the network. We hence show experiments with only fully connected layers.

2.5.1 Comparison with OBS and OBD

Given the fact that Optimal Brain Damage/Surgery methods are very difficult to evaluate for

mid-to-large size networks, we attempted to compare it against our method on a toy problem.

We use the SpamBase dataset [1], which comprises of 4300 datapoints belonging to two classes,

each having 57 dimensional features. We consider a small neural network architecture - with

a single hidden layer composed of 20 neurons. The network used a sigmoidal non-linearity

(rather than ReLU), and was trained using Stochastic Gradient Descent (SGD). The NNSYSID
1 package was used to conduct these experiments.

Figure 2.3: Comparison of proposed approach with OBD and OBS. Our method is able to
prune many more weights than OBD/OBS at little or no increase in test error

Figure 2.3 is a plot of the test error as a function of the number of neurons removed. A

‘flatter’ curve indicates better performance, as this means that one can remove more weights

for very little increase in test error. We see that our method is able to maintain is low test

error as more weights are removed. The presence of an additional ‘surgery’ step in our method

improves performance when compared to OBD. Figure 2.4 shows performance of our method

when surgery is not performed. We see that the method breaks down completely in such a

scenario. OBS performs inferior to our method because it presumably prunes away important

weights early on - so that any surgery is not able to recover the original performance level. In

1http://www.iau.dtu.dk/research/control/nnsysid.html

20



addition to this, our method took < 0.1 seconds to run, whereas OBD took 7 minutes and OBS

took > 5 hours. This points to the fact that our method could scale well for large networks.

Figure 2.4: Comparison with and without surgery. Our method breaks down when surgery is
not performed. Note that the y-axis is the log of test error.

2.5.2 Experiments on LeNet

We evaluate our method on the MNIST dataset, using a LeNet-like [32] architecture. This

set of experiments was performed using the Caffe Deep learning framework [26]. The network

consisted of a two 5 × 5 convolutional layers with 20 and 50 filters, and two fully connected

layers with 500 and 10 (output layer) neurons. Noting the fact that the third layer contains

99% of the total weights, we perform compression only on that layer.

Neurons pruned Naive method Random removals Ours Compression (%)
150 99.05 98.63 99.09 29.81
300 98.63 97.81 98.98 59.62
400 97.60 92.07 98.47 79.54
420 96.50 91.37 98.35 83.52
440 94.32 89.25 97.99 87.45
450 92.87 86.35 97.55 89.44
470 62.06 69.82 94.18 93.47

Table 2.1: The numbers represent accuracies in (%) of the models on a test set. ‘Naive method’
refers to removing neurons based on magnitude of weights. The baseline model with 500 neurons
had an accuracy of 99.06%. The highlighted values (in red) are those predicted for cutoff by
our cut-off selection methods.

The results are shown in Table 2.1. We see that our method performs much better than the

naive method of removing weights based on magnitude, as well as random removals - both of

which are data-free techniques.

21



Our data-driven cutoff selection method predicts a cut-off of 420, for a 1% decrease in

accuracy. The data-free method, on the other hand, predicts a cut-off of 440. We see that

immediately after that point, the performance starts decreasing rapidly.

2.5.3 Experiments on AlexNet

For networks like AlexNet [29], we note that there exists two sets of fully connected layers,

rather than one. We observe that pruning a given layer changes the weight-sets for the next

layer. To incorporate this, we first prune weights in earlier layers before pruning weights in

later layers.

For our experiments, we use an AlexNet-like architecture, called CaffeNet, provided with

the Caffe Deep Learning framework. It is very similar to AlexNet, except that the order of max-

pooling and normalization have been interchanged. We use the ILSVRC 2012 [41] validation

set to compute accuracies in the following table.

# FC6 pruned # FC7 pruned Accuracy (%) Compression (%) # weights removed
2800 0 48.16 61.17 37M
2100 0 53.76 45.8 27.9M
1400 0 56.08 30.57 18.6M
700 0 57.68 15.28 9.3M
0 2818 49.76 23.5 14.3M
0 2113 54.16 17.6 10.7M
0 1409 56.00 11.8 7.2M
0 704 57.76 5.88 3.5M

1400 2854 44.56 47.88 29.2M
1400 2140 50.72 43.55 26.5M
1400 1427 53.92 39.22 23.9M
1400 713 55.6 34.89 21.27M

Table 2.2: Compression results for CaffeNet. The first two columns denote the number of
neurons pruned in each of the FC6 and FC7 layers. The validation accuracy of the unpruned
CaffeNet was found to be 57.84%. Note that it has 60.9M weights in total. The numbers in
red denote the best performing models, and those in blue denote the numbers predicted by
our data-free cutoff selection method.

We observe that using fractions (0.25, 0.5, 0.75) of the prediction made by our data-free

method gives us competitive accuracies. We observe that removing as many as 9.3 million

parameters in case of 700 removed neurons in FC6 only reduces the base accuracy by 0.2%.

Our best method was able to remove upto 21.3 million weights, reducing the base accuracy by

only 2.2%.

22



2.6 Conclusion

We proposed a data-free method to prune neurons in a Neural Network. Our method weakly

relates to both Optimal Brain Damage and a form of Knowledge Distillation. By minimizing

the expected squared difference of logits we were able to avoid using any training data for

model compression. We also observed that the saliency curve has low values in the beginning

and exponentially high values towards the end. This fact was used to decide on the number

of neurons to prune. Our method can be used on top of most existing model architectures, as

long as they contain fully connected layers.

Appendix

Proof: [Proof of Lemma 1] Given h(·) is monotonically increasing, andmax
(

dh(x)
dx

)
≤ 1, ∀ x ∈

R.

=⇒ 0 <
dh(x)

dx
≤ 1 =⇒

∫ a

b

0 dx <

∫ a

b

dh(x) ≤
∫ a

b

dx =⇒ 0 < h(a)− h(b) ≤ a− b

Since both h(a)− h(b) > 0, and a− b > 0, we can square both sides of the inequality.

(h(a)− h(b))2 ≤ (a− b)2

2

23



Chapter 3

Architecture Learning using

Backpropagation

Everything should be made as simple as possible, but not simpler - Einstein

3.1 Introduction

So far, we have seen that neural networks can be pruned even without using any training

data. Can we prune better if we used training data? In this chapter, we consider the problem

of automatically building smaller networks that achieve performance levels similar to larger

networks. More importantly, this reduction is performed using training data - which is what

is used to learn weights as well. As we shall soon see, this conveniently takes the form of a

regularizer added to the overall loss function.

Regularizers are often used to encourage learning simpler models. These usually restrict

the magnitude (`2) or the sparsity (`1) of weights. However, to restrict the computational

complexity of neural networks, we need a regularizer which restricts the width and depth of

network. Here, width of a layer refers to the number of neurons in that layer, while depth

simply corresponds to the total number of layers. Generally speaking, the greater the width

and depth, the more are the number of neurons, the more computationally complex the model

is. Naturally, one would want to restrict the total number of neurons as a means of controlling

the computational complexity of the model. However, the number of neurons is an integer,

making it difficult to optimize over. This work aims at making this problem easier to solve.

The overall contributions of the chapter are as follows.

• We propose novel trainable parameters which are used to restrict the total number of

neurons in a neural network model - thus effectively selecting width and depth.

24



• We perform experimental analysis of our method to analyze the behaviour of our method.

• We use our method to perform architecture selection and learn models with considerably

small number of parameters

3.2 Complexity as a regularizer

In general, the term ‘architecture’ of a neural network can refer to aspects of a network other

than width and depth (like filter size, stride, etc). However, here we use that word to simply

mean width and depth. Given that we want to reduce the complexity of the model, let us

formally define our notions of complexity and architecture.

Notation 1 Let Φ = [n1, n2, ..., nm, 0, 0, ...] be an infinite-dimensional vector whose first m

components are positive integers, while the rest are zeros. This represents an m-layer neural

network architecture with ni neurons for the ith layer. We call Φ as the architecture of a neural

network.

For these vectors, we define an associated norm which corresponds to our notion of archi-

tectural complexity of the neural network. Our notion of complexity is simply the total number

of neurons in the network.

The true measure of computational complexity of a neural network would be the total

number of weights or parameters. However, if we consider a single layer neural network, this is

proportional to the number of neurons in the hidden layer. Even though this equivalence breaks

down for multi-layered neural networks, we nevertheless use the same for want of simplicity. In

Chapter 5 of this thesis, where we consider weights instead of neurons, this equivalence holds

for arbitrary networks.

Definition 1 The complexity of a m-layer neural network with architecture Φ is given by ‖Φ‖ =
m∑
i=1

ni.

Our overall objective can hence be stated as the following optimization problem.

θ̂, Φ̂ = arg min
θ,Φ

`(ŷ(θ,Φ), y) + λ‖Φ‖ (3.1)

where θ denotes the weights of the neural network, and Φ the architecture. `(ŷ(θ,Φ), y) denotes

the loss function, which depends on the underlying task to be solved. For example, squared-error

loss functions are generally used for regression problems and cross-entropy loss for classification.

In this objective, there exists the classical trade-off between model complexity and loss, which is

25



handled by the λ parameter. Note that we learn both the weights (θ) as well as the architecture

(Φ) in this problem. We term any algorithm which solves the above problem as an Architecture-

Learning (AL) algorithm.

We observe that the task defined above is very difficult to solve, primarily because ‖Φ‖ is an

integer. This makes it an integer programming problem. Hence, we cannot use gradient-based

techniques to optimize for this. The main contribution of this work is the re-formulation of this

optimization problem so that Stochastic Gradient Descent (SGD) and back-propagation may

be used.

3.2.1 A Strategy for a trainable regularizer

We require a strategy to automatically select a neural network’s architecture, i.e; the width of

each layer and depth of the network. One way to select for width of a layer is to introduce

additional learnable parameters which multiply with every neuron’s output, as shown in Figure

3.1(a). If these new parameters are restricted to be binary, then those neurons with a zero-

parameter can simply be removed. In the figure, the trainable parameters corresponding to

neurons with values b and d are zero, nullifying their contribution. Thus, the sum of these binary

trainable parameters will be equal to the effective width of the network. For convolutional layers

with n feature map outputs, we have n additional parameters that select a subset of the n feature

maps. A single additional parameter multiplies with an entire feature map either making it

zero or preserving it. After all, filters are analogous to neurons for convolutional layers.

-0.5 0 0.5 1

x

0

0.05

0.1

0.15

0.2

0.25

y

y = x2

y = x (1 - x)

(a) (b)

Figure 3.1: (a) Our strategy for selecting width and depth. Left: Grey blobs denote neurons, coloured
blobs denote the proposed additional trainable parameters. Right: Purple bars denote weight-matrices.
(b) Graph of the `2 regularizer and the binarizing regularizer in 1-D.

To further reduce the complexity of network, we also strive to reduce the network’s depth.

It is well known that two neural network layers without any non-linearity between them is

26



equivalent to a single layer, whose parameters are given by the matrix product of the weight

matrices of the original two layers. This is shown on the right of Figure 3.1(a). We can there-

fore consider a trainable non-linearity, which prefers ‘linearity’ over ‘non-linearity’. Wherever

linearity is selected, the corresponding layer can be combined with the next layer. Hence, the

total complexity of the neural network would be the number of parameters in layers with a

non-linearity.

In this work, we combine both these intuitive observations into one single framework. This

is captured in our definition of the tri-state ReLU which follows.

3.2.1.1 Definition: Tri-state ReLU

We define a new trainable non-linearity which we call the tri-state ReLU (tsReLU) as follows:

tsReLU(x) =

wx, x ≥ 0

wdx, otherwise
(3.2)

This reduces to the usual ReLU for w = 1 and d = 0. For a fixed w = 1 and a trainable d,

this turns into parametric ReLU [20]. For us, both w and d are trainable. However, we restrict

both these parameters to take only binary values. As a result, three possible states exist for

this function. For w = 0, this function is always returns zero. For w = 1 and d = 0 it behaves

similar to ReLU, while for w = d = 1 it reduces to the identity function.

Here, parameter w selects for the width of the layer, while d decides depth. While the

w parameter is different across channels of a layer, the d parameter is tied to the same value

across all channels. If d = 1, we can combine that layer with the next to yield a single layer. If

w = 0 for any channel, we can simply remove that neuron as well as the corresponding weights

in the next layer.

Thus, our objective while using the tri-state ReLU is

Minimize
θ,wij ,di:∀i,j

`(ŷ(θ,w,d), y)

such that wij, di ∈ {0, 1} , ∀i, j
(3.3)

We remind the reader that here i denotes the layer number, while j denotes the jth neuron

in a layer. Note that for λ = 0, it converts the objective in Equation 3.1 from an integer

programming problem to that of binary programming.

27



3.2.1.2 Learning binary parameters

Given the definition of tri-state ReLU (tsReLU) above, we require a method to learn binary

parameters for w and d. To this end, we use a regularizer given by w × (1 − w) [36]. This

regularizer encourages binary values for parameters, if they are constrained to lie in [0, 1].

Henceforth, we shall refer to this as the binarizing regularizer. Murray and Ng [36] showed

that this regularizer does indeed converge to binary values given a large number of iterations.

For the 1-D case, this function is an downward-facing parabola with minima at 0 and 1, as

shown in Figure 3.1(b). As a result, weights “fall” to 0 or 1 at convergence. In contrast, the `2

regularizer is an upward facing parabola with a minimum at 0, which causes it to push weights

to be close to zero.

With this intuition, we now state our tsReLU optimization objective.

θ,w,d = arg min
θ,wij ,di:∀i,j

`(ŷ(θ,w,d), y) + λ1

m∑
i=1

ni∑
j=1

wij(1 − wij) + λ2

m∑
i=1

di(1 − di) (3.4)

Note that λ1 is the regularization constant for the width-limiting term, while λ2 is for the

depth-limiting term. This objective can be solved using the usual back-propagation algorithm.

As indicated earlier, this binarizing regularizer works only if w’s and d’s are guaranteed to be

in [0, 1]. To enforce the same, we perform clipping after parameter update.

After optimization, even though the final parameters are expected to be close to binary,

they are still real numbers close to 0 or 1. Let wij be the parameter obtained during the

optimization. The tsReLU function uses a binarized version of this variable

w′ij =

1, wij ≥ 0.5

0, otherwise

during the feedforward stage. Note that wij slowly changes during training, while w′ij only

reflects the changes made to wij. A similar equation holds for d′i.

3.2.2 Adding model complexity

So far, we have considered the problem of solving Equation 3.1 with λ = 0. As a result,

the objective function described above does not necessarily select for smaller models. Let

hi =
ni∑
j=1

wij correspond to the complexity of the ith layer, obtained by adding over all ni

neurons in that layer. The model complexity term is given by

28



‖Φ‖ =
m∑
i=1

hi1(di=0)

This is formulated such that for di = 0, the complexity of a layer is just hi, while for di = 1

(non-linearity absent), the complexity is 0. Overall, it counts the total number of neurons in

the model at convergence.

We now add a regularizer analogous to model complexity (defined above) in our optimization

objective in Equation 3.4 . Let us call the regularizer corresponding to model complexity as

Rm(h,d), which is given by

Rm(h,d) = λ3

m∑
i=1

hi1(di<0.5) − λ4

m∑
i=1

di (3.5)

The first term in the above equation limits the complexity of each layer’s width, while

the second term limits the network’s depth by encouraging linearity. Note that the first term

becomes zero when a non-linearity is absent. Also note that the indicator function in the first

term is non-differentiable. As a result, we simply treat that term as a constant with respect to

di.

3.3 Properties of the method

Here we identify a few properties of our architecture selection method.

1. Non-redundancy of architecture: The learnt final architecture must not have any

redundant neurons. Removing neurons should necessarily degrade performance.

2. Local-optimality of weights: The performance of the learnt final architecture must at

least be equal to a trained neural network initialized with this final architecture.

3. Mirroring data-complexity: A ‘harder’ dataset should result in a larger model than

an ‘easier’ dataset.

We intuitively observe that all these properties would automatically hold if a ‘master’ prop-

erty which requires both the architecture and the weights be globally optimal holds. Given that

the optimization objective of neural networks is highly non-convex, global optimality cannot

be guaranteed. As a result, we restrict ourselves to studying the three properties listed.

In the text that follows, we provide statements that hold for our method. These are obtained

by analysing widths of each layer of a neural network assuming that depth is never collapsed.

In other words, these hold for neural networks with a single hidden layer.

29



Non-redundancy of architecture

This is an important property that forms the main motivation for doing architecture-learning.

Such a procedure can replace the node-pruning techniques that are used to compress neural

networks.

Proposition 1 At convergence, the loss (`) of the proposed method over the train set satisfies
∂`

∂Φ
< 0

This statement implies that change in architecture is inversely proportional to change in

loss. In other words, if the architecture grows smaller, the loss must increase. While there isn’t

a strict relationship between loss and accuracy, a high loss generally indicates worse accuracy.

Local Optimality of weights

The proposed method learns both architecture and weights. What would happen if we initialized

a neural network with this learnt architecture, and proceeded to learn only the weights? This

property ensures that in both cases we fall into a local minimum with architecture Φ.

Proposition 2 Let `1 be the loss over the train set at convergence obtained by training a neural

network on data D with a fixed architecture Φ. Let `2 be the loss at convergence when the neural

network is trained with the proposed method on data D such that it results in the same final

architecture Φ. Then,
∂`1

∂θ
< ε and

∂`2

∂θ
< ε for any ε→ 0.

Mirroring data-complexity

Characterizing data-complexity has traditionally been hard. Here, we consider the following

approach.

Proposition 3 Let D1 and D2 be two datasets which produce train losses `1 and `2 upon

training with a fixed architecture Φ such that `1 > `2. When trained with the proposed method,

the final architectures Φ̂1 and Φ̂2 (corresponding to D1 and D2) satisfy the relation ‖Φ̂1‖ > ‖Φ̂2‖
at convergence.

Here, D1 is the ‘harder’ dataset because it produces a higher loss on the same neural network

architecture. As a result, the ‘harder’ dataset always produces a larger final architecture. We

do not provide a proof for this statement. Instead, we experimentally verify this in Section

3.5.2.

30



3.3.1 Proofs of Propositions

Let E = ` + λbRb + λmRm be total objective function, where Rb is the binarizing regularizer,

Rm = ‖φ‖ is the model complexity term. At convergence, we assume that Rb = 0 as the

corresponding weights are all binary or close to binary. Let the maximum step size (due to

gradient clipping) for w and d be s.

Proof: [Proof of proposition 1] At convergence, we assume
∂E

∂φ
< ε, for some ε→ 0+.

∂`

∂φ
< −λm

∂‖φ‖
∂φ

+ ε =⇒ ∂`

∂φ
< −λm + ε =⇒ ∂`

∂φ
< 0

for some ε sufficiently small.

2

Proof: [Proof of proposition 2] Let Rb = 0 at tth1 iteration with architecture Φ1. Let Φ2 be the

architecture at iteration t2 > t1 such that at iterations t1 < t < t2, architecture is Φ1.

=⇒ ∃ an iteration t1 < t < t2 such that Rb > s(1 − s) = s1, s being the maximum step

size.

Let q =
∂`2

∂θ2

. Let λb be parameterized by k as follows.

λb s1 = ED(q) + kσ where σ = ED(q −ED(q))2

If k →∞ then P(q > λb s1)→ 0

Hence, for large enough λb, Φ2 = Φ1. After T >> t iterations, we have

∂`1

∂θ1

< ε and
∂`2

∂θ2

< ε (3.6)

for some ε→ 0+. However, if θ1 ∈ Rd1 , then θ2 ∈ Rd2 , such that d1 < d2.

Without loss of generality, let us assume that neurons corresponding to first d1 weights are

selected for, while the rest are inactive. As a result,
∂`2

∂θ2(d)
= 0, for d ∈ [d1, d2]. Hence, the

following holds
∂`2

∂θ1

< ε. This, along with equation 3.6, proves the assertion.

2

31



3.4 Related Work

There have been many works which look at performing compression of a neural network.

Weight-pruning techniques were popularized by Optimal Brain Damage [31] and Optimal Brain

Surgery [19]. Recently, [45] proposed a neuron pruning technique, which relied on neuronal sim-

ilarity. Our work, on the other hand, performs neuron pruning based on learning, rather than

hand-crafted rules. Our learning objective can thus be seen as performing pruning and learning

together, unlike the work of Han et al. [18], who perform both operations alternately.

Learning neural network architecture has also been explored to some extent. The Cascade-

correlation [14] proposed a novel learning rule to ‘grow’ the neural network. However, it was

shown for only a single layer network and is hence not clear how to scale to large deep networks.

Our work is inspired from the recent work of Kulkarni et al. [30] who proposed to learn the

width of neural networks in a way similar to ours. Specifically, they proposed to learn a diagonal

matrix D along with neurons Wx, such that DWx represents that layer’s neurons. However,

instead of imposing a binary constraint (like ours), they learn real-weights and impose an `1-

based sparsity-inducing regularizer on D to encourage zeros. By imposing a binary constraint,

we are able to directly regularize for the model complexity. Recently, Bayesian Optimization-

based algorithms [43] have also been proposed for automatically learning hyper-parameters

of neural networks. However, for the purpose of selecting architecture, these typically require

training multiple models with different architectures - while our method selects the architecture

in a single run.

Many methods have been proposed to train models that are deep, yet have a lower pa-

rameterisation than conventional networks. Collins and Kohli [11] propose a sparsity inducing

regulariser for backpropogation which promotes many weights to have zero magnitude. They

achieve reduction in memory consumption when compared to traditionally trained models. In

contrast, our method promotes neurons to have a zero-magnitude. As a result, our overall

objective function is much simpler to solve. Denil et al. [12] demonstrate that most of the

parameters of a model can be predicted given only a few parameters. At training time, they

learn only a few parameters and predict the rest. Yang et al. [54] propose an Adaptive Fastfood

transform, which is an efficient re-parametrization of fully-connected layer weights. This results

in a reduction of complexity for weight storage and computation.

Some recent works have also focussed on using approximations of weight matrices to perform

compression. Jaderberg et al. [25] and Denton et al. [13] use SVD-based low rank approx-

imations of the weight matrix. Gong et al. [16] use a clustering-based product quantization

approach to build an indexing scheme that reduces the space occupied by the matrix on disk.

32



3.5 Experiments

In this section, we perform experiments to analyse the behaviour of our method. In the first set

of experiments, we evaluate performance on the MNIST dataset. Later, we look at a case study

on ILSVRC 2012 dataset. Our experiments are performed using the Theano Deep Learning

Framework [5].

3.5.1 Compression performance

We evaluate our method on the MNIST dataset, using a LeNet-like [32] architecture. The

network consists of two 5×5 convolutional layers with 20 and 50 filters, and two fully connected

layers with 500 and 10 (output layer) neurons. We use this architecture as a starting point to

learn smaller architectures. First, we learn using our additional parameters and regularizers.

Second, we remove neurons with zero gate values and collapse depth for linearities wherever is

it advantageous. For example, it might not be advantageous to remove depth in a bottleneck

layer (like in auto-encoders). Thus, the second part of the process is human-guided.

Starting from a baseline architecture, we learn smaller architectures with variations of our

method. Note that there is max-pooling applied after each of the convolutional layers, which

rules out depth selection for those two layers. We compare the proposed method against

baselines of directly training a neural network (NN) on the final architecture, and our method

of learning a fixed final width (FFW) for various layers. In Table 3.1, the Layers Learnt column

has binary elements (w, d) which denotes whether width(w) or depth(d) are learnt for each layer

in the baseline network. As an example, the second row shows a method where only the width

is learnt in the first two layers, and depth also learnt in the third layer. This table shows that

all considered models - large and small - perform more or less equally well in terms of accuracy.

This empirically shows that the small models discovered by AL preserve accuracy.

We also compare the compression performance of our AL method against SVD-based com-

pression of the weight matrix in Table 3.2. Here we only compress layer 3 (which has 800× 500

weights) using SVD. The results show that learning a smaller network is beneficial over learning

a large network and then performing SVD-based compression.

3.5.2 Analysis

We now perform a few more experiments to further analyse the behaviour of our method. In all

cases, we train ‘AL2’-like models, and consider the third layer for evaluation. We start learning

with the baseline architecture considered above.

First, we look at the effects of using different hyper-parameters . From Figure 3.2(a) , we

33



Method λ3 Layers Learnt Architecture AL (%) NN (%)

Baseline N/A (0,x)-(0,x)-(0,0) 20-50-500-10 N/A 99.3
AL1 0.4λ1 (1,x)-(1,x)-(1,1) 16-26-10 99.07 99.08
AL2 0.4λ1 (1,x)-(1,x)-(1,0) 20-50-20-10 99.07 99.14
AL3 0.2λ1 (1,x)-(1,x)-(1,1) 16-40-10 99.22 99.25
AL4 0.2λ1 (1,x)-(1,x)-(1,0) 20-50-70-10 99.19 99.21

Table 3.1: Architecture learning performance of our method on a LeNet-like baseline. The Layers
Learnt column has binary elements (w, d) which denotes whether width(w) or depth(d) are learnt for
each layer in the baseline network. AL = Architecture Learning, NN = Neural Network trained w/o
AL

Method Params Accuracy (%)

Baseline 431K 99.3
SVD (rank-10) 43.6K 98.47

AL2 40.9K 99.07
SVD (rank-40) 83.1K 99.06

AL4 82.3K 99.19

Table 3.2: Comparison of compression performance of proposed method against SVD-based weight-
matrix compression.

observe that (i) increasing λ3 encourages the method to prune more, and (ii) decreasing λ1

encourages the method to learn the architecture for an extended amount of time. In both

cases, we see that the architecture stays more-or-less constant after a large enough number of

iterations.

Second, we look at the learnt architectures for different amounts of data complexity. In-

tuitively, simpler data should lead to smaller architectures. A simple way to obtain data of

differing complexity is to simply vary the number of classes in a multi-class problem like MNIST.

We hence vary the number of classes from 2 − 10, and run our method for each case without

changing any hyper-parameters. As seen in Figure 3.2(b) , we see an almost monotonic increase

in both architectural complexity and error rate, which confirms our hypothesis.

Third, we look at the depth-selection capabilities of our method. We used models with

various initial depths and observed the depths of the resultant models. We used an initial

architecture of 20 - 50 - (75 × n) - 10, where layers with width 75 are repeated to obtain a

network of desired depth. We see that for small changes in the initial depth, the final learnt

depth stays more or less constant.

34



Initial Final Learnt Architecture Error (%)
Depth Depth

6 5 18-31-32-24-10 1.02
8 6 17-37-39-29-21-10 0.99
10 6 17-34-32-21-21-10 0.97
12 6 18-34-30-21-17-10 1.04
15 8 16-37-35-25-20-22-10 0.93

Table 3.3: Performance of the proposed method on networks of increasing depth.

0 5 10 15 20 25 30

Number of iterations (× 1000)

0

50

100

150

200

250

N
o.

 o
f n

eu
ro

ns

AL (λ
3
 = 0.1λ

1
)

AL (λ
3
 = 0.5λ

1
)

AL (λ‘
1
 = 0.2λ

1
)

2 3 4 5 6 7 8 9 10

Number of classes

2

4

6

8

10

12

14

16

N
o.

 o
f n

eu
ro

ns

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr

or
 r

at
e 

(%
)

No. of neurons
Error rate (%)

(a) (b)

Figure 3.2: (a) Plot of the architecture learnt against the number of iterations. We see that λ1 affects
convergence rate while λ3 affects amount of pruning. (b) Plot of the no. of neurons learnt for MNIST
with various number of classes. We see that both the neuron count and the error rate increase with
increase in number of classes.

3.5.3 Architecture Selection

In recent times, Bayesian Optimization (BO) has emerged as a compelling option for hyper-

parameter optimization. In these set of experiments, we compare the architecture-selection

capabilities of our method against BO. In particular, we use the Spearmint-lite software package

[43] with default parameters for our experiments.

We use BO to first determine the width of the last FC layer (a single scalar), and later,

the width of all three layers (3 scalars). For comparison, we use the same objective function

for both BO and Architecture-Learning. This means that we use λ3 = 10−5 for AL, while we

externally compute the cost after every training run for BO. Figure 3.3 shows that BO typically

needs multiple runs to discover networks which perform close to AL. Performing such multiple

runs is often prohibitive for large networks. Even for a small network like ours, training took

∼30 minutes on a TitanX GPU for 300 epochs. Training with AL does not change the training

time, whereas using BO we spent ∼10 hours for completing 20 runs. Further, AL directly

optimizes the cost function as opposed to BO, which performs a black-box optimization.

Given that we perform architecture selection, what hyper-parameters does AL need? We

35



notice that we only need to decide four quantities - λ1−4. If our objective is to only decide

widths, we need to decide only two quantities - λ1 and λ3. Thus, for a n-layer neural network,

we are able to decide n (or 2n − 1) numbers (widths and depths) based on only two (or four)

global hyper-parameters. In the Appendix, we shall look at heuristics for setting these hyper-

parameters.

0 2 4 6 8 10 12 14 16 18 20
Number of BO iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
os
t
(ℓ

+
λ
‖Φ

‖)

Bayesian Optimization - Layer 3
Architecture Learning - Layer 3

0 2 4 6 8 10 12 14 16 18 20
Number of BO iterations

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
os
t
(ℓ

+
λ
‖Φ

‖)

Bayesian Optimization - All
Architecture Learning - All

(a) (b)

Figure 3.3: (a) Comparison against Bayesian Optimization for the case of learning the width of only
third layer. (b) Similar comparison for learning the widths of all three layers. (λ = 10−5 in both
cases)

3.5.4 Case study: AlexNet
For the experiments that follow, we use an AlexNet-like [29] model, called CaffeNet, provided

with the Caffe Deep Learning framework. It is very similar to AlexNet, except that the order of

max-pooling and normalization have been interchanged. We use the ILSVRC 2012 [41] valida-

tion set to compute accuracies in the Table 3.4. Unlike the experiments performed previously,

we start with a pre-trained model and then perform architecture learning (AL) on the learnt

weights. We see that our method performs almost as well as the state of the art compression

methods. This means that one can simply use a smaller neural network instead of using weight

re-parameterization techniques (FastFood, SVD) on a large network.

Further, many compression methods are formulated keeping only fully-connected layers in

mind. For tasks like Semantic Segmentation, networks with only convolutional layers are used

[33]. Our results show that the proposed method can successfully prune both fully connected

neurons and convolutional filters. Further, ours (along with SVD) is among the few compres-

sion methods that can utilize dense matrix computations, whereas all other methods require

specialized kernels for sparse matrix computations [18] or custom implementations for diagonal

matrix multiplication [54], etc.

3.5.5 A Note on Hyper-parameter selection

For effective usage of our method, we need a good set of λs. Here, we describe how to do so

practically.

36



Method Params Accuracy (%) Compression (% )

Reference Model (CaffeNet) 60.9M 57.41 0
Neuron Pruning ([45]) 39.6M 55.60 35
SVD-quarter-F ([54]) 25.6M 56.19 58

Adaptive FastFood 16 ([54]) 18.7M 57.10 69

AL-conv-fc 19.6M 55.90 68
AL-fc 19.8M 54.30 68

AL-conv 47.8M 55.87 22

Table 3.4: Compression performance on CaffeNet.
Method Layers Learnt Architecture

Baseline N/A 96 256 384 384 256 4096 4096 1000
AL-fc fc[6,7] 96 256 384 384 256 1536 1317 1000

AL-conv conv[1,2,3,4,5] 80 127 264 274 183 4096 4096 1000
AL-conv-fc conv[5] - fc[6,7] 96 256 384 384 237 1761 1661 1000

Table 3.5: Architectures learnt by our method whose performance is given in Table 3.4.

First, we set λ3 to a low value based on the initial widths and loss values. Recall that this

value multiplies with the number of neurons in the cost function. That is, if a network has

a layer with n neurons, we get λ3 × n. Hence, if n multiplies by 10, λ3 divides by 10. We

used 10−5 for MNIST-network and 10−6 for AlexNet. For a given initial architecture, a large

λ3 places more emphasis on getting small models than reducing loss.

Second, we set λ1 to be about ∼ 2 times λ3. Using a positive λ3 shifts the curve to the

right. By letting λ3 = λ1, the curve shifts to the extreme right with the peak at x = 1. Hence

if λ3 = k × λ1, we set 0 < k < 1.

We simply set λ2 and λ4 to 1/10th of λ1 and λ3 respectively.

3.6 Conclusions

We have presented a method to learn a neural network’s architecture along with weights.

Rather than directly selecting width and depth of networks, we introduced a small number of

real-valued hyper-parameters which selected width and depth for us. We also saw that we get

smaller architectures for MNIST and ImageNet datasets that perform on par with the large

architectures. Our method is very simple and straightforward, and can be suitably applied

to any neural network. This can also be used as a tool to further explore the dependence of

architecture on the optimization and convergence of neural networks.

37



Chapter 4

Connection between Architecture

Learning and Dropout

4.1 Introduction

In the previous chapter, we noticed that the architecture learning objective could be written

down as a regularizer. The immediate question that follows from this is - how is architecture

learning related to other regularizers in literature? In this chapter, we explore connections with

dropout.

Strong regularizers are often required to restrict the complexity of large deep models.

Dropout [50] is a stochastic regularizer that has been widely used in recent times. However,

the rule itself was proposed as a heuristic - with the objective of reducing co-adaption among

neurons. As a result, it’s behaviour was (and still is) not well understood. Gal and Gharamani

[15] showed that dropout implicitly performs approximate Bayesian inference - making it a

Bayesian Neural Net.

Bayesian Neural Nets (BNNs) view parameters of a Neural Network as random variables

rather than fixed unknown quantities. As a result, there exists a distribution of possible values

that each parameter can take. By placing an appropriate prior over these random variables, it is

possible to restrict the model’s capacity and implicitly perform regularization. The theoretical

attractiveness of these methods is that one can now use tools from probability theory to work

with these models. What advantages do BNNs offer over plain Neural Nets? First, they

inherently capture uncertainty - both in the model parameters as well as predictions. Second,

they are ideal for learning from small amounts of data. Third, a Bayesian approach has the

advantage of distilling complex assumptions about the model in the form of prior distributions.

Inference over BNNs is typically intractable. As a result, one often uses approximations to

38



the posterior distribution. MCMC and Variational Inference (VI) [6] are two popular methods

for performing these approximations. In recent times, VI has emerged as the preferred method

of performing this approximation as it is scalable to large models. When using VI, it is common

to assume independence of model parameters. For Neural Networks, this assumption may seem

unnecessarily stringent. After all, weights in a particular filter are highly correlated to produce

specific patterns (an oriented edge, for instance). However, different filters in a CNN are more-

or-less independent as they compute different features. In fact, it might even be advantageous

to enforce independence of different filters through VI, as they reduce co-adaptation among

features. In this work, we strive to enforce independence among features rather than weights.

The overall contributions of the chapter are as follows:

• We derive a Bayesian approach to performing inference with neural networks. In doing

so, we introduce a rich family of regularizers - Generalized Dropout (GD).

• We perform experimental analysis with Dropout++, a set of methods under GD, to

understand it’s behaviour.

• We perform experiments with Stochastic Architecture Learning, another set of methods

under GD, and show that they can be used to select the width of neural networks.

• We test Dropout++ on standard networks and show that it can be used to boost perfor-

mance.

4.2 Bayesian Neural Networks

In this section, we shall formally introduce the notion of BNNs and also discuss our proposed

method. Let f(·; w) denote a neural network function with parameters w. For a given input

x, the neural network produces y = f(x; w) a probability distribution over possible labels

(through softmax) for a classification problem. Given training data D, the parameter vector w

is updated using Bayes’ Rule.

P (w|D) ∝ P (D|w)P (w) (4.1)

After computing the posterior distribution, we perform inference on a new data point x as

follows. Since the neural network produces a probability distribution over labels, P (y|x,w) =

f(x; w)

P (y|x, ) =

∫
w

P (y|x,w)P (w|)dw =

∫
w

f(x; w)P (w|)dw (4.2)

39



Computing the posterior from equation 4.1 is intractable due to the complicated neural

network structure. In Variational Inference, we define another distribution q(w), called the

variational distribution, which approximates the posterior P (w|D). This distribution is used

instead of the posterior in equation 4.2 for inference.

One common assumption when working with the variational distribution is the mean-field

assumption, which requires that

q(w) =
∏
i

q(wi) (4.3)

This states that all parameters in w are independent. Such an assumption is certainly not

true, especially at the feature-level, where parameters are highly correlated. Works like those of

Denil et al [12] explicitly show that parameters of a NN can be predicted given other parameters

- hinting at the large amount of correlation present. Trying to enforce independence among

such weights may end up having adverse effects.

It is very difficult to overcome the independence assumption within the framework of VI.

In the next section, we introduce an approach to overcome this difficulty.

4.2.1 Bayesian Neural Networks with Gates

We add multiplicative gates after each feature / neuron in the neural network, as in Figure

4.1a. These gates modulate the output of each neuron. Let these new parameters be denoted

by θ. Let us also assume that they lie in [0, 1]. Intuitively, these gates now control the relative

importance of each particular feature as viewed by the next layer. Such relative importance

may be fundamentally uncertain given a particular feature. Hence, it may be useful to think of

gate parameters θ as random variables. We shall now crystallize all these assumptions in the

form of choices for the variational distribution.

We first place the following prior-hyperprior pair over the gate parameters θ , and a prior

over the regular parameters w.

θ ∼
∏
i

bernoulli(ki) k ∼
∏
i

beta(α, β) w ∼
∏
i

N(0, σ)

Note that the products are over all possible variables defined in the network. Here, k

denotes the bernoulli parameters and also needs to be estimated along with θ,w. Now, given

that we use variational inference, let us now define the forms of the variational distributions

q(w,θ,k;µ) we use. Let µ = {µ1,µ2}.

40



q(w,θ,k;µ) = q1(w;µ1) q2(k;µ2) q3(θ;µ2)

q1(w) =
∏
i

δ(wi ; µi1) (4.4)

q2(k) =
∏
i

δ(ki ; µi2)

q3(θ) =
∏
i

bernoulli(θi ; µi2) (4.5)

Note that even though we make an independence assumption on the weights w (equation

4.4), we overcome the disadvantages described in the previous section by effectively not being

Bayesian with respect to w, using a delta distribution. Also note that we use the same parameter

µ2 for both distributions q2(.) and q3(.). While it is true that using different parameters for

both distributions could make the formulation more powerful, we use the same parameter

for simplicity. Now we write equations describing the variational approximation by using the

definitions above.

µ∗1,µ
∗
2 = arg min

µ1,µ2

KL[q(w,θ,k;µ)||P (w,θ,k|D)] (4.6)

= arg min
µ1,µ2

−
∑
θ

logP (D|θ,w,k) q3(θ;µ2)− logP (k;α, β)

Our objective is now to solve equation 4.6. We observe that the exhaustive summation in

equation 4.6 in intractable for large models. A popular method to deal with this is to use a

Monte-Carlo approximation of the summation. However, even this may be infeasible for large

models. As a result, we further approximate this with a single Monte-Carlo sample. In other

words, we perform the following approximation:

∑
θ

logP (D|θ,w,k) q3(θ;µ2) ≈ logP (D|θs,w,k)

where θs ∼ q3(θ;µ2)

While this approximation seems to be drastic, we soon shall see that Classic Dropout also

implicitly performs the same approximation.

41



(a) Neural Network Layer with Gates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

3.5

be
ta

(x
;α

,β
)

Dropout++ [0.5]
Dropout++ [flat]
Dropout++ [1]
Dropout++ [0]
Stochastic Architecture Learning

(b) Beta distribution

Figure 4.1: (a) An illustration of the proposed method with binary stochastic multiplicative
gates. Here, W refers to weights and θ refers to gates. Note that P (θ = 1) = k. (b) Behaviour
of the beta distribution at different values of α, β.

4.2.2 Generalized Dropout

Given all the assumptions and approximations discussed above, we now write the complete

objective function we aim to solve. Since the variational distributions for w and k are delta

distributions, we shall now use w,k instead of µ1,µ2 in our notations, for simplicity.

w∗,k∗ = arg minw,k − logP (D|θs,w,k)− (α− 1) log k− (β − 1) log(1− k) (4.7)

where θs ∼ bernoulli(θ; k)

In the expression above, we have used the fact that P (k;α, β) is a beta distribution. This

form of the objective function 4.7, with gates θ,k constitutes the Generalized Dropout regular-

izer.

Let us now briefly look at the behaviour of the beta distribution at various values of α, β,

as shown in Figure 4.1b. We shall refer to each of these specific cases as different versions

of Dropout++. For reasons to be discussed later, we shall refer to the last case as Stochastic

Architecture Learning (SAL).

• Dropout++ (0.5), where α = β > 1: k = 0.5 is the most probable value of k.

• Dropout++ (flat), where α = β = 1: All values of k are equally probable.

• Dropout++ (1), where α = 1, β > 1: k = 1 is the most probable value of k.

42



• Dropout++ (0), where α > 1, β = 1: k = 0 is the most probable value of k.

• SAL, where α < 1, β < 1: k = 0 and k = 1 are the most probable values of k.

Note that Dropout++ (0.5) becomes indistinguishable from Classic Dropout (with 0.5

Dropout rate) at α = β → ∞. To obtain other Dropout rates, we simply ensure α 6= β.

In the next section, we shall discuss another algorithm called Architecture Learning, and how

it relates to the SAL method above.

4.2.3 Architecture Learning

Srinivas and Babu [46] recently introduced a method to learn the width and depth of neural

network architectures. They also add additional learnable parameters similar to gates. Also,

their objective function has the following form in our notation.

w∗,k∗ = arg minw,k − logP (D|θs,w,k) + λ1k(1− k) + λ3k (4.8)

where θs = heaviside(k− 0.5)

Note that our objective function 4.7 looks very similar to this when α, β < 1 and α < β,

except that we use log k instead of k. Another difference is that they use a heaviside threshold

to select θ rather than sampling from a bernoulli. We observe that this is equivalent to taking a

maximum likelihood sample from the bernoulli distribution. Given these similarities, we found

it apt to name the corresponding method with α, β < 1 as Stochastic Architecture Learning, as

it is a stochastic version of the algorithm described above.

Most surprisingly, we find that the motivation to arrive at this algorithm was completely

different - they intended to minimize the number of neurons in the network. We arrive at a

very similar formulation from a purely Bayesian perspective.

4.2.4 A Practitioner’s Perspective

In this section, we shall attempt to provide an intuitive explanation for Generalized Dropout.

Going back to Fig. 4.1a, each neuron is augmented with a gate which learns values between

0 and 1. This is enforced by our regularizers and well as by parameter clipping. During the

forward pass, we treat each of these gate values as probabilities and toss a coin with that

probability. The output of the coin toss is used to block / allow neuron outputs. As a result

of the learning, important features tend to have higher probability values than unimportant

features.

43



At test time, we do not perform any sampling. Rather, we simply use the real-valued

probability values in the gate variables. This approximation - called re-scaling - is used in

classical Dropout as well.

What do the different Generalized Dropout methods do? Intuitively, they place restriction

on the gate values (probabilities) that can be learnt. As an example, Dropout++ (0) encourages

most gate values to be close to 0, with only a few important ones being high. On the other

hand, Dropout++ (1) encourages gates values to be close to 1. Intuitively, this means that

Dropout++ (0) restricts the capacity of a layer by a large amount, whereas Dropout++ (1)

hardly changes anything. SAL, on the other hand, encourages neurons to be close to either 0

or 1. In contrast to other methods, SAL produces neural network layers that are very close to

being deterministic - neurons close to 0 are almost never ’on’ and those close to 1 are almost

always ’on’. Dropout++ (flat) is also unique in the sense that it doesn’t place any restriction

on the gate values. As a result, we do not require to set any hyper-parameters for this method.

From a Bayesian Perspective, when we have no prior beliefs on what the gate values should be,

we use the most non-informative prior - which is Dropout++ (flat) in this case.

Dropout++ (0.5) encourages values to be close to 0.5. If the regularization constants are

increased, then gate values other than 0.5 are penalized more and more heavily. In the limiting

case we get Dropout, where any deviation from probability value of 0.5 is ”infinitely” penalized.

4.2.5 Estimating gradients for binary stochastic gates

Given our formalism of stochastic gate variables, it is unclear how one might compute error

gradients through them. Bengio et al. [4] investigated this problem for binary stochastic

neurons and empirically verified the efficacy of different solutions. They conclude that the

simplest way of computing gradients - the straight-through estimator works best overall. This

involves simply back-propagating through a stochastic neuron as if it were an identity function.

If the sampling step is given by θ ∼ bernoulli(k), then the gradient dθ
dk

= 1 is used.

Another issue of consideration is that of ensuring that k always lies in [0, 1] so that it is a

valid bernoulli parameter. Bengio et al. [4] use a sigmoid activation over k. Our experiments

showed clipping functions worked better. This can be thought of as a ‘linearized’ sigmoid. The

clipping function is given by the following expression.

clip(k) =


1, k ≥ 1

0, k ≤ 0

k, otherwise

44



The overall sampling function is hence given by θ ∼ bernoulli(clip(k)), and the straight-

through estimator is used to estimate gradients overall.

4.2.6 Applying to Convolution Layers

Here we shall discuss how to apply this to convolutional layers. Let us assume that the output

feature map from a convolutional layer is k× k× n, i.e; n feature maps of size k× k. Classical

dropout samples k × k × n bernoulli random variables and performs pointwise multiplication

with the output feature map. We follow the same for Generalized Dropout as well.

However, if we wish to perform architecture selection like Architecture Learning [46], we

need to select a subset of the n feature maps. In this case, we only have n gate variables,

multiplying to the output of each feature map. When a gate is close to zero, and entire feature

map’s output becomes close to zero at test time. By selecting few feature maps out of n, we

determine which of the n filters in the previous layer are essential.

4.3 Related Work

There are plenty of works which aim to extend Dropout. DropConnect [53] stochastically drops

weights instead of neurons to obtain better accuracy on ensembles of networks. As stated ear-

lier, using the independence assumption for weights may not be correct. Indeed, DropConnect

is shown to work on only fully connected layers. Standout [3] is a version of Dropout where

the dropout rate depends on the output activations of a layer. Variational Dropout [28] pro-

poses a Bayesian interpretation for Gaussian Dropout rather than the canonical multiplicative

Dropout. By considering multiplicative Dropout, we make important connections to Architec-

ture Learning / neuron pruning. Gal and Gharamani [15] showed a Bayesian interpretation for

binary dropout and show that test performance improves by performing Monte-Carlo averaging

rather than re-scaling. For simplicity, we use the re-scaling method at test time for Generalized

Dropout. Our work can be seen as an extension of this work by considering a hyper-prior along

with a bernoulli prior.

Hinton and Van Camp [23] first introduced variational inference for making Neural Net-

works Bayesian. Recent work by Graves [17] and Blundell et al. [7] further investigated this

notion by using different priors and relevant approximations for large networks. Probabalistic

Backpropagation [22] is an algorithm for inferring marginal posterior probabilities for special

classes of Bayesian Neural Networks. Our method is different from any of these methods as

they are all Bayesian over the weights, whereas we are only Bayesian with respect to the gates.

45



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

# Training samples ×104

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g
2
(E

rr
or

R
at
e)

Dropout [0.5]
Dropout++ [0]
Dropout++ [flat]
Dropout++ [0.5]

(a) Effect of Large data

100 200 300 400 500 600 700 800 900 1000

# Training samples

4

6

8

10

12

14

16

18

20

22

24

E
rr

or
 R

at
e

Dropout++ [0]
Dropout [0.5]
Dropout [0.1]

(b) Effect of Small data

0 100 200 300 400 500 600 700 800 900 1000

Layer Width

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 G
at

e 
V

al
ue

Dropout++ [flat]
Dropout++ [0]
SAL

(c) Gate value vs Layer Width

5 10 15 20 25 30

Layer Width

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

E
rr

or
 R

at
e

Dropout [0.5]
Dropout++ [0]
Dropout++ [Flat]

(d) Accuracy vs Layer Width

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dropout Value / Gate Initialization

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

E
rr

or
 R

at
e

Dropout
Dropout++ [flat]

(e) Effect of initialization

0 10 20 30 40 50 60 70 80 90 100

Num. Epochs

0

5

10

15

20

25

30

35

40

45

E
rr

or
 R

at
e

Dropout [0.5]
No Dropout
Dropout++ [flat]

(f) Speeding up Training

5 10 15 20 25

5

10

15

20

25

(g) Input Layer Gate values
(h) Conv. Layer (mean) Gate val-
ues

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Layer Pruned

-1

0

1

2

3

4

5

6

7

lo
g
2
(E

rr
or

R
at
e)

SAL
Dropout++ [0]
Dropout++ [flat]

(i) Pruning Gates

Figure 4.2: (a, b) All Dropout++ methods perform on par with Dropout on large data, and
Dropout++ (0) seems to work better on small data. (c, d) Dropout++ can adapt to different
layer sizes and result in optimal performance. (e, f) Initialization of Dropout++ parameters is
not very crucial. As a result, one can initialize favourably to drastically increase training speed.
(g, h) Dropout++ on convolutional layers learns to selectively attend to parts of the image,
rather than the full image. (i) SAL and Dropout++ (0) are best suited for gate pruning, with
SAL being better for automated pruning given the steep slope.

4.4 Experiments

In this section, we perform experiments with the Generalized Dropout family to test their

usefulness. First, we perform a wide variety of analysis with the Generalized Dropout family.

46



Method Architecture Error (%) No. of Params

Baseline 20-50-500-10 0.82 431k
Architecture Learning [46] 20-50-20-10 0.93 41.8k

SAL [β/α = 1] 18-50-296-10 0.69 263k
SAL [β/α = 10] 11-33-38-10 0.84 29.8k
SAL [β/α = 100] 7-13-16-10 1.14 5.9k

Table 4.1: Architecture selection capability of our method on a LeNet-like baseline. The first
row is the architecture and performance of the baseline LeNet network. We see that larger β/α
ratios result in smaller networks at the cost of network performance.

Later, we study some specific applications of this method. We perform experiments primarily

using Theano [5] and Lasagne.

4.4.1 Analysis of Generalized Dropout

We shall now analyze the behaviours of different members of Generalized Dropout family to

find out which ones are useful. For the experiments on the MNIST dataset, we use the standard

LeNet-like architecture [32], which consists of two 5 × 5 convolutional layers with 20 and 50

filters, and two fully connected layers with 500 and 10 (output layer) neurons. While there is

nothing particularly special about this architecture, we simply use this as a standard net to

analyze our method.

4.4.1.1 Effect of data-size

We investigate whether Generalized Dropout indeed has any advantage over Dropout in terms

of accuracy. Here, we apply Dropout and Generalized Dropout only to the last fully connected

layer. Our experiments reveal that for the network considered, the accuracies achieved by

any Generalized Dropout method are not always strictly better than Dropout, as shown in

Figure 4.2a. This indicates that most of the regularization power of Dropout comes from the

independence assumption of Variational Inference, rather than particular values of the dropout

parameter. This is a surprising result which we shall use to our advantage in the paper.

However, we note that for small data-sizes, Dropout++ (0) seems to be advantageous over

Dropout (Figure 4.2b). This is possibly because Dropout++ (0) forces most neurons (but not

all) to have very low capacity due to low value of the parameters. 1

4.4.1.2 Effect of Layer-width

Inspired from the above results about Dropout++ (0), we look at the relationship between using

different layer-widths for the fully connected layer and the learnt gate parameters. Intuitively,

1Note that in our notation, a large value of Dropout++ indicates a large probability of retaining the neuron,
contrary to popularly used notation for Dropout.

47



Model Original D++ (1.0) Drop (0.98) D++ (0.5) Drop (0.8)

ResNet-32 [21] 7.46 6.73 6.8 - -
ResNet-56 [21] 6.75 6.1 6.18 - -
GenericNet [44] 6.86 6.6 6.75 6.32 6.46

Table 4.2: Applying Dropout++ after each layer in standard networks decreases error rate (%).
Dropout++ learnt values (with init = 1.0) are close to 0.98. As a result, Dropout at p = 0.98
performs similar to this learnt value. With Dropout++ init = 0.5, the learnt values are close
to p = 0.8.

it is natural to assume that larger layers should learn lower gate values, whereas smaller layers

should learn much higher values, if we wish for the overall capacity of the layer to remain

roughly the same. Our experiments confirm this intuition as shown in Figure 4.2c.

We also test if this flexibility translates to higher accuracy numbers over a fixed dropout

value, and we find this to be indeed the case. We find that for small layer-widths, Dropout

(at p = 0.5 for example), tends to remove too many neurons, while Dropout++ adjusts it’s

parameter values to account for small layer-widths, as shown in Figure 4.2d.

4.4.1.3 Effect of Initialization

Initialization of good parameters is known to play a key-role in generalization of deep learning

systems. To test whether this holds for the newly introduced Generalized Dropout parameters

as well, we try different initializations of the Generalized Dropout parameters. In this example,

we simply initialize all gates to a single constant value. As expected, we find that the choice of

this initialization is much less crucial when compared to setting the Dropout value, as shown

in Figure 4.2e.

The choice of initialization, however, affects training time. As an example, it is empirically

observed that Dropout with p = 0.1 is much slower than p = 0.9. Therefore, it is helpful to

have higher Dropout rates to facilitate faster training. To help faster training in Dropout++,

we simply initialize with p = 1.0, i.e; start with a network with no Dropout and gradually learn

how much Dropout to add. We observe that this indeed helps training time and at the same

time provides the flexibility of Dropout, as shown in Figure 4.2f.

4.4.1.4 Visualization of Learnt Parameters

Until this point, we have focussed on using Generalized Dropout on the fully connected layers.

Similar effects hold when we apply these to convolutional layers as well. Here, we visualize the

learnt parameters in convolutional layers. First, we add Dropout++ only to the input layer.

The resulting gate parameters are shown in Figure 4.2g. We observe a similar effect when we

add Dropout++ only to the first convolutional layer, as shown in Figure 4.2h, which shows

48



the average gate map of all the convolutional filters in that layer. In both cases, we observe

that Dropout++ learns to selectively attend to the centre of the image rather than towards the

corners.

This has multiple advantages. First, by not looking at the corners of each feature, we

can potentially decrease model evaluation time. Second, this breaks translation equivariance

implicit in convolutions, as in our case certain spatial locations are more important for a filter

than others. This could be helpful when using CNNs for face images (for example), where a

filter need not look for an ”eye” everywhere in the image. Such locally connected layers have

been previously used in works such as DeepFace [52]. Dropout++ could offer a more natural

way to incorporate such an assumption.

4.4.1.5 Architecture Selection

We shall now attempt to use Stochastic Architecture Learning (SAL) to automatically learn the

required layer width of the network. The inherent assumption here is that the initial architecture

is over-complete, and that a sub-set of neurons is sufficient to get similar performance. We first

learn the parameters of the network using SAL regularizer, later we prune neurons with low

gates parameters. Figure 4.2i shows that SAL learns gate parameters that are often close to

either 0 or 1, resulting in a much sharper rise compared to the other methods. We use this sharp

rise as a criterion to select the width of a layer. We observe that varying the β/α parameter

encourages the method to get smaller architectures, sometimes at the cost of accuracy, as shown

in Table 4.1.

4.4.2 Dropout++ on standard models

So far we have studied the various properties of Generalized Dropout by performing vari-

ous experiments on LeNet. We shall now shift to larger networks to test the effectiveness of

Dropout++. Modern networks mainly use dropout only in the fully connected layers, or simply

not at all, owing to much powerful regularizers such as Batch Normalization. Here we shall take

such networks, simply add Dropout++ (flat) after each layer, and see if we get an increase in

accuracy. We perform experiments with ResNet32, ResNet56 and a Generic VGG-like network,

all trained on the CIFAR-10 dataset. As in Table 4.2, we see that for all three models, adding

Dropout++ is largely helpful.

49



4.5 Conclusion

We have proposed Generalized Dropout, a family of methods that generalize Dropout-like be-

haviour. One set of methods in this family, Dropout++, is an adaptive version of Dropout.

Stochastic Architecture Learning is another set of methods that performs architecture selec-

tion. An uninformed choice of the Dropout parameter usually hurts performance. Dropout++

helps in setting a useful parameter value regardless of factors such as layer width and initial-

ization. Experiments show that it is generally beneficial to simply add Dropout++ (flat) after

every layer of a Deep Network.

50



Chapter 5

Application: Training Sparse Neural

Networks

5.1 Introduction

In this chapter we shall discuss the application of techniques discussed previously to training

sparse neural networks. While the methods of previous chapters introduced block sparsity in

weights, here we impose full sparsity. In doing so, we also briefly discuss connections of the

general method to spike-and-slab priors and stochastic optimization.

Large networks with many millions of parameters [29], [42], [51] often use dense matrix

multiplications and convolutions. However, these networks typically use dense computations.

Would it be advantageous to use sparse computations instead? Apart from having fewer num-

ber of parameters to store (O(mn) to O(k))1, sparse computations also decrease feedforward

evaluation time (O(mnp) to O(kp))2. Further, having a lower parameter count may help in

avoiding overfitting.

Regularizers are often used to discourage overfitting. These usually restrict the magnitude

(`2/`1) of weights. However, to restrict the computational complexity of neural networks, we

need a regularizer which restricts the total number of parameters of a network. A common

strategy to obtain sparse parameters is to apply sparsity-inducing regularizers such as the `1

penalty on the parameter vector. However, this is often insufficient in inducing sparsity in

case of large non-convex problems like deep neural network training as shown in [11]. The

contribution of this chapter is to be able to induce sparsity in a tractable way for such models.

The overall contributions of the chapter are as follows.

1For a matrix of size m× n with k non-zero elements
2For matrix-vector multiplies with a dense vector of size p

51



• We propose a novel regularizer that restricts the total number of parameters in the net-

work.

• We perform experimental analysis to understand the behaviour of our method.

• We apply our method on LeNet-5, AlexNet and VGG-16 network architectures to achieve

state-of-the-art results on network compression.

5.2 Problem Formulation

To understand the motivation behind our method, let us first define our notion of computational

complexity of a neural network.

Let Φ = {gs1, gs2, ..., gsm} be a set of m vectors. This represents an m-layer dense neural

network architecture where gsi is a vector of parameter indices for the ith layer, i.e; gsi = {0, 1}ni .

Here, each layer gsi contains ni elements. Zero indicates absence of a parameter and one indicates

presence. Thus, for a dense neural network, gi is a vector of all ones, i.e.; gsi = {1}ni . For a

sparse parameter vector, gsi would consist of mostly zeros. Let us call Φ as the index set of a

neural network.

For these vectors, our notion of complexity is simply the total number of parameters in the

network.

Definition 2 The complexity of a m-layer neural network with index set Φ is given by ‖Φ‖ =
m∑
i=1

ni.

We now aim to solve the following optimization problem.

θ̂, Φ̂ = arg min
θ,Φ

`(ŷ(θ,Φ), y) + λ‖Φ‖ (5.1)

where θ denotes the weights of the neural network, and Φ the index set. `(ŷ(θ,Φ), y) denotes

the loss function, which depends on the underlying task to be solved. Here, we learn both the

weights as well as the index set of the neural network. Using the formalism of the index set,

we are able to penalize the total number of network parameters. While easy to state, we note

that this problem is difficult to solve, primarily because Φ contains elements ∈ {0, 1}.

5.2.1 Gate Variables

How do we incorporate the index set formalism in neural networks? Assume that the index set

(Gs in Fig. 5.1) is multiplied pointwise with the weight matrix. This results in a weight matrix

52



Figure 5.1: Our strategy for sparsifying weight matrices. First, we sample / threshold the gate
variables. We then multiply the resulting binary matrix with W , to yield a sparse matrix W s.

that is effectively sparse, if the index set has lots of zeros rather than ones. In other words, we

end up learning two sets of variables to ensure that one of them - weights - becomes sparse.

How do we learn such binary parameters in the first place ?

To facilitate this, we interpret index set variables (Gs) as draws from a bernoulli random

variable. As a result, we end up learning the real-valued bernoulli parameters (G in Fig. 5.1),

or gate variables rather than index set variables themselves. Here the sampled binary gate

matrix Gs corresponds exactly to the index set, or the Φ matrix described above. To clarify our

notation, G and g stand for the real-valued gate variables, while the superscript (.)s indicates

binary sampled variables.

When we draw from a bernoulli distribution, we have two choices - we can either perform a

unbiased draw (the usual sampling process), or we can perform a so-called maximum-likelihood

(ML) draw. The ML draw involves simply thresholding the values of G at 0.5. To ensure

determinism, we use the ML draw or thresholding in this work.

5.2.2 Promoting Sparsity

Given our formalism of gate variables, how do we ensure that the learnt bernoulli parameters

are low - or in our case - mostly less than 0.5 ? One plausible option is to use the `2 or the

`1 regularizer on the gate variables. However, this does not ensure that there will exist values

greater than 0.5. To accommodate this, we require a bi-modal regularizer, i.e; a regularizer

which ensures that some values are large, but most values are small.

To this end, we use a regularizer given by w× (1−w). This was introduced by [36] to learn

binary values for parameters. However, what is important for us is that this regularizer has the

bi-modal property mentioned earlier, as shown in Fig. 5.2a

Our overall regularizer is simply a combination of this bi-modal regularizer as well the

traditional `2 or `1 regularizer for the individual gate variables. Our objective function is now

53



-0.5 0 0.5 1

x

0

0.05

0.1

0.15

0.2

0.25

y

y = x2

y = x (1 - x)

(a) Bi-modal regularizer

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

y = N(x|0,1)
y = δ(x)

(b) Spike and slab prior

Figure 5.2: (a) The bi-modal regularizer used in our work. Note that this encourages values to
be close to 0 and 1, in contrast to the `2 regularizer. (b) An example of a spike-and-slab prior
similar to the one used in this work (except for a constant).

stated as follows.

θ̂, Φ̂ = arg min
θ,Φ

`(ŷ(θ,Φ), y) + λ1

m∑
i=1

ni∑
j=1

gi,j(1− gi,j) + λ2

m∑
i=1

ni∑
j=1

gi,j (5.2)

where gi,j denotes the jth gate parameter in the ith layer. Note that for gi,j ∈ {0, 1}, the

second term in Eqn. 5.2 vanishes and the third term becomes λ‖Φ‖, thus reducing to Eqn.5.1.

5.2.3 An Alternate Interpretation

Now that we have arrived at the objective function in Eqn.5.2, it is natural to ask the question

- how do we know that it solves the original objective in Eqn.5.1 ? We shall now derive Eqn.5.2

from this perspective.

Assuming the formulation of gate variables, we can re-write the objective in Eqn.5.1 as

follows.

θ̂, Φ̂ = arg min
θ,G

`(ŷ(θ,Gs), y) + λ

m∑
i=1

ni∑
j=1

gsi,j (5.3)

gsi,j ∼ bernoulli(gi,j), ∀ i, j

where gs is the sampled version of gate variables g. Note that Eqn.5.3 is a stochastic

objective function, arising from the fact that gs is a random variable. We can convert this to

a real-valued objective by taking expectations. Note that expectation of the loss function is

54



difficult to compute. As a result, we approximate it with a Monte-Carlo average.

θ̂, Φ̂ = arg min
θ,G

1

t

∑
t

(`(ŷ(θ,Gs), y)) + λ

m∑
i=1

ni∑
j=1

gi,j

gsi,j ∼ bernoulli(gi,j), ∀ i, j

where E(gsi,j) = gi,j. While this formulation is sufficient to solve the original problem,

we impose another condition on this objective. We would like to minimize the number of

Monte-Carlo evaluations in the loss term. This amounts to reducing [1
t

∑
t(`(ŷ(θ,Gs), y)) −

E(`(ŷ(θ,Gs), y))]2 for a fixed t, or reducing the variance of the loss term. This is done by

reducing the variance of gs, the only random variable in the equation. To account for this, we

add another penalty term corresponding to Var(gs) = g × (1 − g). Imposing this additional

penalty and then using t = 1 gives us back Eqn.5.2.

5.2.4 Relation to Spike-and-Slab priors

We observe that our problem formulation closely resembles spike-and-slab type priors used in

Bayesian statistics for variable selection [34]. Broadly speaking, these priors are mixtures of

two distributions - one with very low variance (spike), and another with comparatively large

variance (slab). By placing a large mass on the spike, we can expect to obtain parameter vectors

with large sparsity.

Let us consider for a moment using the following prior for weight matrices of neural networks.

P (W ) =
1

Z

∏
i

exp(− (1− δ(wi)))α N(wi|0, σ2)1−α (5.4)

Here, δ(·) denotes the dirac delta distribution, and Z denotes the normalizing constant,

and α is the mixture coefficient. Also note that like [34], we assume that wi ∈ [−k, k] for some

k > 0. This is visualized in Fig. 5.2b. Note that this is a multiplicative mixture of distributions,

rather than additive. By taking negative logarithm of this term and ignoring constant terms,

we obtain

− logP (W ) = −α
∑
i

(1− δ(wi)) +
1− α
2σ2

∑
i

w2
i (5.5)

Note that the first term in this expression corresponds exactly to the number of non-zero

parameters, i.e; the λ ‖Φ‖ term of Eqn. 3.1. The second term corresponds to the usual `2

regularizer on the weights of the network (rather than gates). As a result, we conclude that

55



Eqn. 5.4 is a spike-and-slab prior which we implicitly end up using in this method.

5.2.5 Estimating gradients for gate variables

How do we estimate gradients for gate variables, given that they are binary stochastic variables,

rather than real-valued and smooth? In other words, how do we backpropagate through the

bernoulli sampling step? Bengio et al. [4] investigated this problem and empirically verified

the efficacy of different possible solutions. They conclude that the simplest way of computing

gradients - the straight-through estimator works best overall. Our experiments also agree with

this observation.

The straight-through estimator simply involves back-propagating through a stochastic neu-

ron as if it were an identity function. If the sampling step is given by gs ∼ bernoulli(g), then

the gradient dgs

dg
= 1 is used.

Another issue of consideration is that of ensuring that g always lies in [0, 1] so that it is a

valid bernoulli parameter. Bengio et al. [4] use a sigmoid activation function to achieve this.

Our experiments showed that clipping functions worked better. This can be thought of as a

‘linearized’ sigmoid. The clipping function is given by the following expression.

clip(x) =


1, x ≥ 1

0, x ≤ 0

x, otherwise

The overall sampling function is hence given by gs ∼ bernoulli(clip(g)), and the straight-

through estimator is used to estimate gradients overall.

5.2.6 Comparison with LASSO

LASSO is commonly used method to attain sparsity and perform variable selection. The main

difference between the above method and LASSO is that LASSO is primarily a shrinkage

operator, i.e.; it shrinks all parameters until lots of them are close to zero. This is not true for

the case of spike-and-slab priors, which can have high sparsity and encourage large values at

the same time. This is due to the richer parameterization of these priors.

5.2.7 Practical issues

In this section we shall discuss some practical issues pertaining to our method. Our method

ironically uses twice the number of parameters as a typical neural network, as we have two sets

of variables - weights and gates. As a result, model size doubles while training. However, we

multiply the two to result in sparse matrices which considerably reduces model size at test time.

56



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gate Initialization

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
pa

rs
ity

ML Threshold
Bernoulli Sampling

(a) Effect of Gate initialization

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

λ
1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

S
pa

rs
ity

 r
at

io

λ
2
 = 0

λ
2
 = 1e-3

(b) Effect of varying λ1

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

λ
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
pa

rs
ity

 r
at

io

λ
1
 = 0

λ
1
 = 1e-3

(c) Effect of varying λ2

Figure 5.3: (a) We vary the initialization of the gate variables and observe it’s effect on sparsity.
The dotted blue lines denote the variance of sparsity in case of the sampling-based method.
(b) λ1 seems to have a stabilizing effect on sparsity whereas (c) increasing λ2 seems to increase
sparsity.

Essentially we do not have to store both sets of parameters while testing,only a element-wise

product of the two is required. Even though the model size doubles at train time, we note that

speed of training / feedforward evaluation is not affected due to the fact that only element-wise

operations are used.

Our method can be applied to both convolutional tensors as well as fully connected matrices.

However while performing compression, we note that convolutional layers are less susceptible

to compression that fully connected layers due to the small number of parameters they possess.

5.3 Related Work

There have been many recent works which perform compression of neural networks. Weight-

pruning techniques were popularized by LeCun et al. [31] and Hassibi et al. [19], who introduced

Optimal Brain Damage and Optimal Brain Surgery respectively. Recently, Srinivas and Babu

[45] proposed a neuron pruning technique, which relied on neuronal similarity. In contrast, we

perform weight pruning based on learning, rather than hand-crafted rules.

Previous attempts have also been made to sparsify neural networks. Han et al. [18] create

sparse networks by alternating between weight pruning and network training. A similar strategy

is followed by Collins and Kohli [11]. On the other hand, our method performs both weight

pruning and network training simultaneously. Further, our method has considerably less

number of hyper-parameters to determine (λ1, λ2) compared to the other methods, which have

n thresholds to be set for each of the n layers in a neural network.

Many methods have been proposed to train models that are deep, yet have a lower pa-

rameterisation than conventional networks. Denil et al. [12] demonstrated that most of the

57



parameters of a model can be predicted given only a few parameters. At training time, they

learn only a few parameters and predict the rest. Yang et al. [54] propose an Adaptive Fastfood

transform, which is an efficient re-parametrization of fully-connected layer weights. This results

in a reduction of complexity for weight storage and computation. Novikov et al. [38] use tensor

decompositions to obtain a factorization of tensors with small number of parameters. Cheng

et al. [9] make use of circulant matrices to re-paramaterize fully connected layers. Some recent

works have also focussed on using approximations of weight matrices to perform compression.

Gong et al. [16] use a clustering-based product quantization approach to build an indexing

scheme that reduces the space occupied by the matrix on disk. Note that to take full advan-

tage of these methods, one needs to have fast implementations of the specific parameterization

used. One the other hand, we use a sparse parameterization, fast implementations of which are

available on almost every platform.

Our work is very similar to that of Architecture Learning [46], which uses a similar framework

to minimize the total number of neurons in a neural network. On the other hand, we minimize

the total number of weights.

Layers Initial Params Final Params Sparsity (%)

conv1 0.5K 0.04K 91
conv2 25K 1.78K 92.8

fc1 400K 15.4K 96.1
fc2 5K 0.6K 86.8

Total 431K 17.9K 95.84

Table 5.1: Compression results for LeNet-5 architecture.

5.4 Experiments

In this section we perform experiments to evaluate the effectiveness of our method. First,

we perform some experiments designed to understand typical behaviour of the method. These

experiments are done primarily on LeNet-5 [32]. Second, we use our method to perform network

compression on two networks - LeNet-5 and AlexNet. These networks are trained on MNIST

and ILSVRC-2012 dataset respectively. Our implementation is based on Lasagne, a Theano-

based library.

5.4.1 Analysis of Proposed method

We shall now describe experiments to analyze the behaviour of our method. First, we shall

analyze the effect of hyper-parameters. Second, we study the effect of varying model sizes on

58



Method Params (P+I)* Accuracy(%) Compression Rate(%)

Baseline 431K 99.20 1x
SVD(rank-10)[13] 43.6K 98.47 10x

AL [46] 40.9K 99.04 10.5x
AF-1024 [54] 38.8K 99.29 11x
Han et al [18] 36K (72k)* 99.23 12x
Method-1 18K (36k)* 99.19 24x
Method-2 22K (44k)* 99.33 19x

Table 5.2: Comparison of compression performance on LeNet-5 architecture. *Count of number
of parameters and the indices to store them. This is the effective storage requirement when
using sparse computations.

the resulting sparsity.

For all analysis experiments, we consider the LeNet-5 network. LeNet-5 consists of two

5 × 5 convolutional layers with 20 and 50 filters, and two fully connected layers with 500 and

10 (output layer) neurons. For analysis, we only study the effects sparsifying the third fully

connected layer.

Layers Initial Params Final Params Sparsity (%)

conv(5 layers) 2.3M 2.3M -
fc6 38M 1.3M 96.5
fc7 17M 1M 94
fc8 4M 1.2M 70

Total 60.9M 5.9M 90

Table 5.3: Layer-wise compression performance on AlexNet

5.4.1.1 Effect of hyper-parameters

In Section 2.1 we described that we used maximum likelihood sampling (i.e.; thresholding)

instead of unbiased sampling from a bernoulli. In these experiments, we shall study the relative

effects of hyper-parameters on both methods. In the sampling case, sparsity is difficult to

measure as different samples may lead to slightly different sparsities. As a result, we measure

expected sparsity as well the it’s variance.

Our methods primarily have the following hyper-parameters: λ1, λ2 and the initialization for

each gate value. As a result, if we have a network with n layers, we have n+2 hyper-parameters

to determine.

First, we analyze the effects of λ1 and λ2. We use different combinations of initializations

for both and look at it’s effects on accuracy and sparsity. As shown in Table 5.5, both the

59



Layers Initial Params Final Params Sparsity (%)

conv1 1 to
conv4 3

(10 layers)

6.7M 6.7M -

conv5 1 2M 2M -
conv5 2 2M 235K 88.2
conv5 3 2M 235K 88.2

fc6 103M 102K 99.9
fc7 17M 167K 99.01
fc8 4M 409K 89.7

Total 138M 9.85M 92.85

Table 5.4: Layer-wise compression performance on VGG-16

thresholding as well as the sparsity-based methods are similarly sensitive to the regularization

constants.

In Section 2.3, we saw that λ1 roughly controls the variance of the bernoulli variables while

λ2 penalizes the mean. In Table 5.5, we see that the mean sparsity for the pair (λ1, λ2) = (1, 0)

is high, while that for (0, 1) is considerably low. Also, we note that the variance of (1, 1) is

smaller than that of (0, 1), confirming our hypothesis that λ1 controls variance.

Overall, we find that both networks are almost equally sparse, and that they yield very

similar accuracies. However, the thresholding-based method is deterministic, which is why we

primarily use this method.

To further analyze effects of λ1 and λ2, we plot sparsity values attained by our method

by fixing one parameter and varying another. In Figure 5.3b we see that λ1, or the variance-

controlling hyper-parameter, mainly stabilizes the training by reducing the sparsity levels. In

Figure 5.3c we see that increasing λ2 increases the sparsity level as expected.

λ1 λ2 Sparsity (%) [T] Avg.Sparsity (%) [S] Variance (%) [S]
0 0 54.5 53.1 16.1
1 1 98.3 93.7 3.3
1 0 62.1 57.3 5.4
0 1 99.0 92.7 4.1

Table 5.5: Effect of λ parameters on sparsity. [T] denotes the threshold-based method, while
[S] denotes that sampling-based method.

We now study the effects of using different initializations for the gate parameters. We

initialize all gate parameters of a layer with the same constant value. We also tried stochastic

initialization for these gate parameters (Eg. from a Gaussian distribution), but we found no

60



Method Total Params (P + I) Accuracy(%) Compression Rate

Baseline 60.9M 57.2 -
Neuron Pruning [45] 39.6M 55.60 1.5x
SVD-quarter-F [54] 25.6M 56.18 2.3x

Adaptive FastFood 32 [54] 22.5M 57.39 2.7x
Adaptive FastFood 16 [54] 16.4M 57.1 3.7x

ACDC [35] 11.9M 56.73 5x
Collins & Kohli [11] 8.5M (17M) 55.60 7x

Han et al [18] 6.7M (13.4M) 57.2 9x
Proposed Method 5.9M (11.8M) 56.96 10.3x

Table 5.6: Comparison of compression performance on AlexNet architecture

Method Total Params (P + I) Accuracy(%) Compression Rate

Baseline 138M 68.97 -
Han et al [18] 10.3M (20.6M) 68.66 13x

Proposed Method 9.8M (19.6M) 69.04 14x

Table 5.7: Comparison of compression performance on VGG-16 architecture

particular advantage in doing so. As shown in Figure 5.3a, both methods seem robust to

varying initializations, with the thresholding method consistently giving higher sparsities. This

robustness to initialization is advantageous to our method, as we no longer need to worry about

finding good initial values for them.

5.4.2 Compression Performance

We test compression performance on three different network architectures - LeNet-5, AlexNet

[29] and VGG-16.

For LeNet-5, we simply sparsify each layer. As shown in Table 5.1, we are able to remove

about 96% of LeNet’s parameters and only suffer a negligible loss in accuracy. Table 5.2 shows

that we obtain state-of-the-art results on LeNet-5 compression. For Proposed Method - 1,

we used (λ1, λ2) = (0.001, 0.05), while for Proposed Method-2, we used (λ1, λ2) = (0.01, 0.1).

These choices were made using a validation set.

Note that our method converts a dense matrix to a sparse matrix, so the total number of

parameters that need to be stored on disk includes the indices of the parameters. As a result,

we report the parameter count along with indices. This is similar to what has been done in

[11]. However, for ASIC implementations, one need not store indices as they can be built into

the circuit structure.

For AlexNet and VGG-16, instead of training from scratch, we fine-tune the network from

61



pre-trained weights. For such pre-trained weights, we found it be useful to pre-initialize the

gate variables so that we do not lose accuracy while starting to fine-tune. Specifically, we ensure

that the gate variables corresponding to the top-k% weights in the W matrix are one, while

the rest are zeros. We use this pre-initialization instead of the constant initialization described

previously.

To help pruning performance, we pre-initialize fully connected gates with very large sparsity

(95%) and convolutional layers with very little sparsity. This means that 95% of gs parameters

are zero, and rest are one. For gs = 1, the underlying gate values were g = 1 and for gs = 0, we

used g = 0.49. This is to ensure good accuracy by preserving important weights while having

large sparsity ratios. The resulting network ended up with a negligible amount of sparsity for

convolutional layers and high sparsity for fully connected layers. For VGG-16, we pre-initialize

the final two convolutional layers as well with 88% sparsity.

We run fine-tuning on AlexNet for 30k iterations (∼ 18 hours), and VGG for 40k (∼ 24

hours) iterations before stopping training based on the combination of compression ratio and

validation accuracy. This is in contrast with [18], who take about 173 hours to fine-tune

AlexNet. The original AlexNet took 75 hours to train. All wall clock numbers are reported by

training on a NVIDIA Titan X GPU. As shown in Table 5.6 and Table 5.7, we obtain favourable

results when compared to the other network compression / sparsification methods.

5.5 Conclusion

We have introduced a novel method to learn neural networks with sparse connections. This can

be interpreted as learning weights and performing pruning simultaneously. By introducing a

learning-based approach to pruning weights, we are able to obtain the optimal level of sparsity.

This enables us to achieve state-of-the-art results on compression of deep neural networks.

62



Chapter 6

Conclusion

In this thesis, we have broadly examined the problem of removing neurons from a neural net-

work. To this end, we have developed a generic set of tools based on adding binary multiplicative

gates to parameters.

In the second Chapter, we found that even a naive data-free method can obtain significant

compression ratios for pruning deep networks. This exposes a fundamental issue with the

way we build and design deep neural networks. Ideally, we should be able to design models

that have little or no redundancy in their architectural specification. This question led us to

the content of Chapter 3, where we developed a method to automatically find a small neural

network architecture for that training data. We theoretically showed that the resultant neural

networks do not contain redundant neurons.

Admittedly, deciding whether to either discard a given neuron or not is too harsh. In reality,

there might exist graded levels of importance. In an attempt to extend Architecture Learning

to incorporate such grey areas, we inadvertently discovered a connection to Dropout. This

was discussed in Chapter 4. Specifically, it turned out that Stochastic Architecture Learning

(SAL) shows the intended behaviour. By simply exploring other values of the underlying beta-

regularizer, we stumbled upon Dropout++ - an adaptive family of Dropout. In a way, Dropout

and Architecture Learning are opposites of one another. While Dropout temporarily drops

neurons to produce good generalization, Architecture Learning permanently drops them to

reduce model size. Curiously, Dropout occurs at α, β → ∞, while Architecture Learning is at

α, β < 1, occurring at the extreme ends of the spectrum. SAL attempts to compromise between

the two behaviours - it stochastically removes neurons at the start of training, realises that some

neurons are not required, and gradually removes them toward the end of optimization. Indeed,

results show that SAL outperforms our previous method - enabling us to compress models

better.

63



The tools developed in Chapters 3 and 4 are rather general. To show their generality,

we apply these to the problem of removing weights in a neural network (Chapter 5). This

method ended up outperforming some of the state-of-the-art methods. In order to connect

with the previous work is this area, we made a connection of our method with sparsity inducing

regularizers. We found that our technique is reminiscent of a class of priors called Spike-and-

slab priors. These are alternatives to traditional `1 based regularizers, which provide sparse

solutions to convex problems. However, given that neural network training is non-convex, `1-

based methods do not work as well. We empirically find that our proposed method better

optimizes the underlying `0 optimization problem. We hypothesize that this regularizer can be

used to encourage sparsity for other large non-convex problems as well.

64



Bibliography

[1] Arthur Asuncion and David Newman. UCI machine learning repository, 2007. 20

[2] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural

Information Processing Systems, pages 2654–2662, 2014. 12

[3] Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In

Advances in Neural Information Processing Systems, pages 3084–3092, 2013. 45

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagat-

ing gradients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013. 44, 56

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:

a cpu and gpu math expression compiler. In Proceedings of the Python for scientific

computing conference (SciPy), volume 4, page 3. Austin, TX, 2010. 33, 47

[6] Christopher M Bishop. Pattern recognition. Machine Learning, 2006. 3, 39

[7] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight

uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015. 45

[8] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 535–541. ACM, 2006. 6, 12, 17

[9] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang.

An exploration of parameter redundancy in deep networks with circulant projections. In

Proceedings of the IEEE International Conference on Computer Vision, pages 2857–2865,

2015. 58

65



BIBLIOGRAPHY

[10] Dan C Cireşan, Ueli Meier, Jonathan Masci, Luca M Gambardella, and Jürgen Schmid-

huber. High-performance neural networks for visual object classification. arXiv preprint

arXiv:1102.0183, 2011. 13

[11] Maxwell D. Collins and Pushmeet Kohli. Memory bounded deep convolutional networks.

CoRR, abs/1412.1442, 2014. URL http://arxiv.org/abs/1412.1442. 7, 13, 32, 51, 57,

61

[12] Misha Denil, Babak Shakibi, Laurent Dinh, and Nando de Freitas. Predicting parameters

in deep learning. In Advances in Neural Information Processing Systems, pages 2148–2156,

2013. 13, 32, 40, 57

[13] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting

linear structure within convolutional networks for efficient evaluation. In Advances in

Neural Information Processing Systems, pages 1269–1277, 2014. 13, 32, 59

[14] Scott E Fahlman and Christian Lebiere. The cascade-correlation learning architecture.

1989. 32

[15] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli

approximate variational inference. arXiv preprint arXiv:1506.02158, 2015. 38, 45

[16] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolu-

tional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014. 13, 32,

58

[17] Alex Graves. Practical variational inference for neural networks. In Advances in Neural

Information Processing Systems, pages 2348–2356, 2011. 45

[18] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connec-

tions for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015. 7, 32, 36, 57,

59, 61, 62

[19] Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning: Op-

timal brain surgeon. Advances in Neural Information Processing Systems, pages 164–164,

1993. 12, 32, 57

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. arXiv preprint

arXiv:1502.01852, 2015. 27

66

http://arxiv.org/abs/1412.1442


BIBLIOGRAPHY

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016. 48

[22] José Miguel Hernández-Lobato and Ryan P Adams. Probabilistic backpropagation for

scalable learning of bayesian neural networks. arXiv preprint arXiv:1502.05336, 2015. 45

[23] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing

the description length of the weights. In Proceedings of the sixth annual conference on

Computational learning theory, pages 5–13. ACM, 1993. 45

[24] Geoffrey E Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. In NIPS 2014 Deep Learning Workshop, 2014. 6, 13, 17

[25] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neu-

ral networks with low rank expansions. In Proceedings of the British Machine Vision

Conference. BMVA Press, 2014. 13, 32

[26] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-

shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. arXiv preprint arXiv:1408.5093, 2014. 21

[27] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun

Shin. Compression of deep convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530, 2015. vii, 9, 10

[28] Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local

reparameterization trick. arXiv preprint arXiv:1506.02557, 2015. 45

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems,

pages 1097–1105, 2012. 5, 12, 15, 20, 22, 36, 51, 61

[30] Praveen Kulkarni, Joaquin Zepeda, Frederic Jurie, Patrick Prez, and Louis Chevallier.

Learning the structure of deep architectures using l1 regularization. In Proceedings of the

British Machine Vision Conference (BMVC), pages 23.1–23.11. BMVA Press, 2015. 32

[31] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel.

Optimal brain damage. In Advances in Neural Information Processing Systems, volume 2,

pages 598–605, 1989. 12, 32, 57

67



BIBLIOGRAPHY

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 2, 21,

33, 47, 58

[33] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for

semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3431–3440, 2015. 36

[34] Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression.

Journal of the American Statistical Association, 83(404):1023–1032, 1988. 55

[35] Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. ACDC: A

structured efficient linear layer. arXiv preprint arXiv:1511.05946, 2015. 61

[36] Walter Murray and Kien-Ming Ng. An algorithm for nonlinear optimization problems with

binary variables. Computational Optimization and Applications, 47(2):257–288, 2010. 28,

53

[37] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann ma-

chines. In Proceedings of the 27th International Conference on Machine Learning (ICML-

10), pages 807–814, 2010. 5

[38] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing

neural networks. In Advances in Neural Information Processing Systems, pages 442–450,

2015. 58

[39] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural networks. arXiv preprint

arXiv:1603.05279, 2016. 8, 9

[40] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,

and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550,

2014. 13

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-

heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV), 2015. doi: 10.1007/s11263-015-0816-y. 2, 22, 36

68



BIBLIOGRAPHY

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. In International Conference on Learning Representations, 2015. 5, 12, 20, 51

[43] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of

machine learning algorithms. In Advances in neural information processing systems, pages

2951–2959, 2012. 32, 35

[44] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan

Sundaram, Md Patwary, Mostofa Ali, and Ryan P Adams. Scalable bayesian optimization

using deep neural networks. arXiv preprint arXiv:1502.05700, 2015. 48

[45] Suraj Srinivas and R. Venkatesh Babu. Data-free parameter pruning for deep neural

networks. In Proceedings of the British Machine Vision Conference (BMVC), pages 31.1–

31.12. BMVA Press, 2015. iii, 32, 37, 57, 61

[46] Suraj Srinivas and R Venkatesh Babu. Learning the architecture of deep neural networks.

arXiv preprint arXiv:1511.05497, 2015. iii, 43, 45, 47, 58, 59

[47] Suraj Srinivas and R Venkatesh Babu. Generalized dropout. arXiv preprint

arXiv:1611.06791, 2016. iii

[48] Suraj Srinivas, Ravi Kiran Sarvadevabhatla, Konda Reddy Mopuri, Nikita Prabhu, Srini-

vas SS Kruthiventi, and R Venkatesh Babu. A taxonomy of deep convolutional neural nets

for computer vision. Frontiers in Robotics and AI, 2:36, 2016. iii, 2

[49] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural

networks. arXiv preprint arXiv:1611.06694, 2016. iii

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal

of Machine Learning Research, 15(1):1929–1958, 2014. 12, 38

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015. 5, 12, 51

[52] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the

gap to human-level performance in face verification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1701–1708, 2014. 4, 49

69



BIBLIOGRAPHY

[53] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of

neural networks using dropconnect. In Proceedings of the 30th International Conference

on Machine Learning (ICML-13), pages 1058–1066, 2013. 45

[54] Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, and

Ziyu Wang. Deep fried convnets. arXiv preprint arXiv:1412.7149, 2014. 9, 32, 36, 37, 58,

59, 61

[55] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning

deep features for scene recognition using places database. In Advances in Neural Informa-

tion Processing Systems 27, pages 487–495. 2014. 2

70


	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Computational Aspects of Deep Neural Networks
	1.1.1 Fully Connected Layers
	1.1.2 Convolutional Layers
	1.1.3 Non-linearities
	1.1.4 Why are CNNs large?

	1.2 Compressing Neural Networks
	1.2.1 Distillation
	1.2.2 Sparsification
	1.2.2.1 Special Case: Block Sparsification

	1.2.3 Quantization
	1.2.3.1 Binary Neural Nets

	1.2.4 Factorization

	1.3 Outline of the thesis

	2 Data-free Neuron Pruning
	2.1 Introduction
	2.2 Wiring similar neurons together
	2.3 The case of dissimilar neurons
	2.3.1 Connection to Optimal Brain Damage
	2.3.2 Connection to Knowledge Distillation
	2.3.3 Weight normalization
	2.3.4 Some heuristics

	2.4 How many neurons to remove?
	2.5 Experiments and Results
	2.5.1 Comparison with OBS and OBD
	2.5.2 Experiments on LeNet
	2.5.3 Experiments on AlexNet

	2.6 Conclusion

	3 Architecture Learning using Backpropagation
	3.1 Introduction
	3.2 Complexity as a regularizer
	3.2.1 A Strategy for a trainable regularizer
	3.2.1.1 Definition: Tri-state ReLU
	3.2.1.2 Learning binary parameters

	3.2.2 Adding model complexity

	3.3 Properties of the method
	3.3.1 Proofs of Propositions

	3.4 Related Work
	3.5 Experiments
	3.5.1 Compression performance
	3.5.2 Analysis
	3.5.3 Architecture Selection
	3.5.4 Case study: AlexNet
	3.5.5 A Note on Hyper-parameter selection

	3.6 Conclusions

	4 Connection between Architecture Learning and Dropout
	4.1 Introduction
	4.2 Bayesian Neural Networks
	4.2.1 Bayesian Neural Networks with Gates
	4.2.2 Generalized Dropout
	4.2.3 Architecture Learning
	4.2.4 A Practitioner's Perspective
	4.2.5 Estimating gradients for binary stochastic gates
	4.2.6 Applying to Convolution Layers

	4.3 Related Work
	4.4 Experiments
	4.4.1 Analysis of Generalized Dropout
	4.4.1.1 Effect of data-size
	4.4.1.2 Effect of Layer-width
	4.4.1.3 Effect of Initialization
	4.4.1.4 Visualization of Learnt Parameters
	4.4.1.5 Architecture Selection

	4.4.2 Dropout++ on standard models

	4.5 Conclusion

	5 Application: Training Sparse Neural Networks
	5.1 Introduction
	5.2 Problem Formulation
	5.2.1 Gate Variables
	5.2.2 Promoting Sparsity
	5.2.3 An Alternate Interpretation
	5.2.4 Relation to Spike-and-Slab priors
	5.2.5 Estimating gradients for gate variables
	5.2.6 Comparison with LASSO
	5.2.7 Practical issues

	5.3 Related Work
	5.4 Experiments
	5.4.1 Analysis of Proposed method
	5.4.1.1 Effect of hyper-parameters

	5.4.2 Compression Performance

	5.5 Conclusion

	6 Conclusion
	Bibliography

