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Neural networks can have excessive non-linearity,

making them sensitive to input noise. This

increases susceptibility to adversarial examples

and gradient instability.

High Curvature Map Low Curvature Map

Research Question: How to e�ciently train

(low-curvature) neural networks without excessive

non-linearity?

Our Approach:

� We �nd that max (global) curvature of

neural networks can be upper bounded by

curvatures and slopes of their constituent

layers (Thm 1)

� De�ne novel architectural components:

centered β-softplus, and γ-Batchnorm that

enable well-de�ned penalization

� Penalize β and γ to penalize global

curvature, without computing expensive

point-wise Hessian norms!

How to Penalize Curvature
Given function f : Rn → R, de�ne its curvature at x by

Cf (x) =
‖∇2x f (x)‖2
‖∇x f (x)‖2 + ε

→ spectral norm of Hessian

→ gradient norm

There are two broad strategies for curvature penalization

1. Local Penalization: minimizes point-wise curvature,

e.g.: [Dezfooli et al., 2019]

2. Global Penalization: minimizes upper-bound on

curvature across data points, e.g.: [Dombrowski et

al., 2022]

Local Penalization Global Penalization

+ (Nearly) exact penalties - Loose bounds can lead to

inexact penalization

- Expensive + E�cient!

- Penalization only at data + Penalization everywhere

In this work, we choose to do global penalization, but �nd

that using approximate local penalization also helps!

Upper Bounding Normalized Curvature

Given a function f = fL◦fL−1◦. . .◦f1 with fi : Rni−1 → Rni ,
the curvature Cf can be bounded by the sum of curvatures

of individual layers Cfi (x), i.e.,

max
x
Cf (x) ≤

L∑
i=1

max
x
Cfi (x)

i∏
j=1

‖Wj‖2.

To minimize the bound, we

1. Penalize curvature of activation functions,

maxx Cfi (x)

2. Penalize Lipschitz constants of linear layers, ‖Wj‖2

Ingredients of LCNNs

(1) Centered β-softplus is de�ned as

s c (x;β) =
1

β
log

(
1 + exp(βx)

2

)

This has several nice properties:

1. Approximates ReLU: sc(x ;β →∞) = ReLU(x)

2. Bounded curvature: Csc (x) ≤ β

3. Stable at low curvature: sc(x ;β → 0) = x/2

4. Stable upon composition: snc (x = 0;β) = 0

Standard softplus diverges for both #3 and #4!

(2) γ-Batchnorm is de�ned as

γ-BN(x)← min(γ, ||BN(x)||2)︸ ︷︷ ︸
scaling factor≤γ

×
BN(x)

||BN(x)||2

(3) �Real� spectral normalization of linear layers, which

is de�ned in previous work [Ryu et al., 2019].

(4) Penalization of curvature by penalization of β and γ

parameters, avoids the need to compute Hessian norms!

Advantages of LCNNs

Low curvature models have stable gradients,

‖∇xf (x+ ε)−∇xf (x)‖2
‖∇xf (x)‖2

∼ ‖ε‖2Cf (x)

...and low curvature is necessary for robustness!

‖f (x+ ε)− f (x)‖2 ∼ ‖ε‖2‖∇xf (x)‖2 (1 + ‖ε‖2Cf (x))

Evaluating Point-wise Curvature

We present results on Resnet-18 models trained on

CIFAR100 dataset.

We �nd that LCNN-based models reduce point-wise

curvature without loss in accuracy, even though they are

designed to penalize global curvature.

Model EXCf (X) Accuracy (%)

Standard 270.89 ± 75.04 77.42 ± 0.11

LCNNs 69.50 ± 2.41 77.30 ± 0.11

GradReg 89.47 ± 5.86 77.20 ± 0.26

LCNNs + GradReg 25.30 ± 0.09 77.29 ± 0.07

HessianReg [1] 116.31 ± 4.58 76.48 ± 0.07

Evaluating Adversarial Robustness

We �nd that LCNNmodels provide adversarial robustness

(to PGD advex and Autoattack) competitive with

adversarial training without sacri�cing accuracy.

Model Clean acc. (%) Adv. acc. (%)

Standard 77.42 ± .10 16.11 ± .21

LCNN 77.16 ± .07 17.66 ± .18

GradReg 77.20 ± .26 38.09 ± .47

LCNNs + GradReg 77.29 ± .26 42.70 ± .77

Adv. Training 76.96 ± .26 44.98 ± .57
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