

Efficient Training of Low-Curvature Neural Networks

Suraj Srinivas^{*}, Kyle Matoba^{*}, Hima Lakkaraju, François Fleuret Harvard University, Idiap Research Institute & EPFL, Harvard University, University of Geneva

*Equal contribution

How to Penalize Curvature

Given function $f : \mathbb{R}^n \to \mathbb{R}$, define its curvature at **x** by

 $\mathcal{C}_f(x) = \frac{\|\nabla_x^2 f(\mathbf{x})\|_2}{\|\nabla_x f(\mathbf{x})\|_2 + \epsilon} \xrightarrow{\to} \text{spectral norm of Hessian} \xrightarrow{\to} \text{gradient norm}$

There are two broad strategies for curvature penalization

- Local Penalization: minimizes point-wise curvature, e.g.: [Dezfooli et al., 2019]
- 2. Global Penalization: minimizes upper-bound on curvature across data points, e.g.: [Dombrowski et al., 2022]

Local Penalization	Global Penalization
+ (Nearly) exact penalties	- Loose bounds can lead to inexact penalization
- Expensive	+ Efficient!
- Penalization only at data	+ Penalization everywhere

In this work, we choose to do global penalization, but find that using approximate local penalization also helps!

Upper Bounding Normalized Curvature

Given a function $f = f_L \circ f_{L-1} \circ \ldots \circ f_1$ with $f_i : \mathbb{R}^{n_{i-1}} \to \mathbb{R}^{n_i}$, the curvature C_f can be bounded by the sum of curvatures of individual layers $\mathcal{C}_{f_i}(\mathbf{x})$, i.e.,

$$\max_{\mathbf{x}} \mathcal{C}_f(\mathbf{x}) \leq \sum_{i=1}^{L} \max_{\mathbf{x}} \mathcal{C}_{f_i}(\mathbf{x}) \prod_{j=1}^{i} ||W_j||_2.$$

To minimize the bound, we

- Penalize curvature of activation functions, $\max_{\mathbf{X}} \mathcal{C}_{f_i}(\mathbf{X})$
- 2. Penalize Lipschitz constants of linear layers, $||W_i||_2$

Ingredients of LCNNs

(1) Centered β -softplus is defined as

$$s_{c}(\mathbf{x};\beta) = \frac{1}{\beta} \log \left(\frac{1 + \exp(\beta \mathbf{x})}{2} \right)$$

This has several nice properties:

- . Approximates ReLU: $s_c(x; \beta \to \infty) = \text{ReLU}(x)$
- 2. Bounded curvature: $\mathcal{C}_{S_c}(x) \leq \beta$
- 3. Stable at low curvature: $s_c(x; \beta \to 0) = x/2$
- . Stable upon composition: $s_c^n(x=0;\beta)=0$

Standard softplus diverges for both #3 and #4!

(2) γ -Batchnorm is defined as

$$\gamma \text{-BN}(x) \leftarrow \underbrace{\min(\gamma, ||\text{BN}(x)||_2)}_{\text{scaling factor} \leq \gamma} \times \frac{\text{BN}(x)}{||\text{BN}(x)||_2}$$

(3) "Real" spectral normalization of linear layers, which is defined in previous work [Ryu et al., 2019].

(4) <u>Penalization</u> of curvature by penalization of β and γ parameters, avoids the need to compute Hessian norms!

Advantages of LCNNs

Low curvature models have stable gradients,

$$\frac{\|\nabla_{\mathsf{x}} f(\mathbf{x} + \epsilon) - \nabla_{\mathsf{x}} f(\mathbf{x})\|_{2}}{\|\nabla_{\mathsf{x}} f(\mathbf{x})\|_{2}} \sim \|\epsilon\|_{2} \mathcal{C}_{f}(\mathbf{x})$$

...and low curvature is necessary for robustness!

$$\|f(\mathbf{x}+\epsilon)-f(\mathbf{x})\|_{2}\sim\|\epsilon\|_{2}\|\nabla_{\mathsf{x}}f(\mathbf{x})\|_{2}(1+\|\epsilon\|_{2}\mathcal{C}_{f}(\mathbf{x}))$$

Evaluating Point-wise Curvature

We present results on Resnet-18 models trained on CIFAR100 dataset.

We find that LCNN-based models reduce point-wise curvature without loss in accuracy, even though they are designed to penalize global curvature.

Model	$\mathbb{E}_X \mathcal{C}_f(X)$	Accuracy (%)
Standard	$270.89 \pm _{75.04}$	77.42 ± 0.11
LCNNs	$69.50{\scriptstyle~\pm~2.41}$	77.30 ± 0.11
GradReg	89.47 ± 5.86	77.20 ± 0.26
LCNNs + GradReg	25.30 ± 0.09	$77.29 \scriptstyle~\pm 0.07$
HessianReg [1]	$116.31 \pm \textbf{4.58}$	76.48 ± 0.07

Evaluating Adversarial Robustness

We find that LCNN models provide adversarial robustness (to PGD advex and Autoattack) competitive with adversarial training without sacrificing accuracy.

Model	Clean acc. $(\%)$	Adv. acc. (%)
Standard	77.42 \pm .10	$16.11 \pm .21$
LCNN	$77.16 \pm .07$	$17.66 \pm .18$
GradReg	77.20 ± .26	$38.09 \pm .47$
LCNNs + GradReg	$77.29 \pm .26$	$42.70 \pm .77$
Adv. Training	$76.96 \pm .26$	$44.98 \pm .57$

References

[1] Dezfooli, Fawzi, Juesato, and Frossard. "Robustness via curvature regularization, and vice versa", CVPR 2019 [2] Ryu, Liu, Wang, Chen, Wang, and Yin. "Plug-and-play methods provably converge with properly trained denoisers", ICML 2019

[3] Dombrowski, Anders, Muller, and Kessel. "Towards robust explanations for deep neural networks". Pattern Recognition 2022