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neural networks in function space
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∙ Different parameterizations can represent the same function
∙ Parameterization-invariant tools describe the function
∙ Regularize the function, not its parameterization
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input jacobian of neural networks

∇xy =
[
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· · · ∂y
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]

∙ In general, for input ∈ RD and output ∈ RK, the Jacobian ∈ RD×K

∙ Jacobian is invariant to parameterization of the function

∙ For ReLU nets without bias, y = ∇xyTx
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knowledge transfer between neural nets
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∙ If datasets A == B, task = distillation; else task = transfer learning
∙ If architectures of both nets are same, we can copy weights
∙ ‘Hints’ must be parameterization invariant

∙ Czarnecki et al. [2017] and Zagoruyko and Komodakis [2017]
previously used Jacobians, but did not motivate choice of loss
function
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our contribution
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Figure: Teacher-student learning in a simple 1D case.

Matching outputs with input noise

Eξ [(T (x+ ξ)− S(x+ ξ)]2 =

Matching outputs

(T (x)− S(x))2 + σ2

Matching Jacobians

∥∇xT (x)−∇xS(x)∥22

4/10



our contribution

Teacher 

Solution 1:

Match with 

input noise

Solution 2:

Match 

Jacobians

Figure: Teacher-student learning in a simple 1D case.

Matching outputs with input noise

Eξ [(T (x+ ξ)− S(x+ ξ)]2 =

Matching outputs

(T (x)− S(x))2 + σ2

Matching Jacobians

∥∇xT (x)−∇xS(x)∥22

4/10



jacobian norm regularization

Matching with input noise

Eξ [y(x)− S(x+ ξ)]2 =

Matching outputs

(y(x)− S(x))2 + σ2
Jacobian norm

∥∇xS(x)∥22

∙ First described by Bishop [1995]
∙ For linear models
Jacobian norm regularizer = ℓ2 regularizer on weights

∙ For neural networks
Jacobian norm regularizer ̸= layerwise ℓ2 weight regularizer
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Applying Jacobian matching to
Transfer Learning



learning without forgetting (lwf) - Li and Hoiem, 2016

Student

Teacher
(Pre-trained net)

Input
(target 
dataset)

Match output
activations

Match with ground 
truth labels (from 
target dataset)

∙ Multi-task objective for the student
∙ Match ground truth labels
∙ Mimic teacher’s response (distillation)

∙ Important: Teacher is not trained on target dataset
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why should it work?

∙ Teacher is not trained on data being matched
∙ Improved matching may not improve transfer learning

∙ Theoretical results:

∙ LwF helps nets with small Lipschitz constants, and when
“distance” between source and target datasets are small

∙ Jacobian matching always improves LwF

∙ Equivalence between Jacobian matching and training with noise
is crucial to the proof
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transfer learning experiments

Table: Transfer Learning from Imagenet to MIT Scenes dataset measured by
test accuracy (%).

# of Data points per class → 25 50 Full
No Transfer Learning 35.19 46.38 59.33
Fine-tuning Oracle 1 57.65 64.18 71.42

LwF 45.08 55.22 65.22
LwF ҏ Jacobians 45.26 56.49 66.04
LwF ҏ attention 46.01 57.80 67.24

LwF ҏ attention ҏ Jacobians 47.31 58.35 67.31

1Requires teacher and student to have the same architecture
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summary

∙ Jacobians are a good parameterization-invariant quantity to use
for distillation, transfer learning and improving robustness to
random noise

∙ The data augmentation viewpoint of Jacobian matching
motivates its use in low data settings.
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Questions?
email: suraj.srinivas@idiap.ch
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