

Introduction

- **Problem:** Improve performance of a student network by using 'hints' from a pre-trained teacher
- If dataset A == dataset B : task = distillation
- else :

task = transfer learning

What 'hints' to use?

- 'Hints' must be invariant to parameterization
- **Previous methods** use neural net outputs *y*
- **Our method** uses $\nabla_x y = \begin{bmatrix} \frac{\partial y}{\partial x_0} & \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_D} \end{bmatrix}$
- Previous works [1, 2] also considered $\nabla_x y$, but did not motivate the choice of loss function or relation to previous approaches.

Knowledge Transfer with Jacobian Matching Suraj Srinivas & François Fleuret {suraj.srinivas, francois.fleuret}@idiap.ch

Jacobian Matching Limited data points Teacher Multiple students fit data Solution 1: Match with input noise Solution 2: Match Jacobians

Jacobian Matching is equivalent to matching output activations with noise added to the inputs.

Form of Loss function

 $\mathcal{T}(x) \to \text{Teacher network}, \mathcal{S}(x) \to \text{Student network}$ $\boldsymbol{\xi} \rightarrow \text{Gaussian noise with covariance } \sigma^2 \mathbf{I}$

$$\mathbb{E}_{\boldsymbol{\xi}} \left[(\mathcal{T}(\mathbf{x} + \boldsymbol{\xi}) - \mathcal{S}(\mathbf{x} + \boldsymbol{\xi}))^2 \right] \\ \sim (\mathcal{T}(\mathbf{x}) - \mathcal{S}(\mathbf{x}))^2 + \sigma^2 \|\nabla_{\boldsymbol{x}} \mathcal{T}(\mathbf{x}) - \nabla_{\boldsymbol{x}} \mathcal{S}(\mathbf{x})\|_2^2$$

$$\mathbb{E}_{\boldsymbol{\xi}} \left[-\mathcal{T}_{s}(\mathbf{x} + \boldsymbol{\xi}) \log \left(\mathcal{S}_{s}(\mathbf{x} + \boldsymbol{\xi}) \right) \right] \\ \sim -\mathcal{T}_{s}(\mathbf{x}) \log(\mathcal{S}_{s}(\mathbf{x})) - \sigma^{2} \frac{\nabla_{x} \mathcal{T}_{s}(\mathbf{x})^{T} \nabla_{x} \mathcal{S}_{s}(\mathbf{x})}{\mathcal{S}_{s}(\mathbf{x})}$$

Jacobian Norm Regularization

 $\mathbb{E}_{\boldsymbol{\xi}}\left[(y(\mathbf{x}) - \mathcal{S}(\mathbf{x} + \boldsymbol{\xi}))^2\right] \sim (y(\mathbf{x}) - \mathcal{S}(\mathbf{x}))^2 + \sigma^2 \|\nabla_{\boldsymbol{x}} \mathcal{S}(\mathbf{x})\|_2^2$

- We encourage the neural net output to be insensitive to small changes to the input.
- For linear models, Jacobian = model weights

Transfer Learning

- We use a distillation-like method called *Learning* without Forgetting (LwF) [3]
- This enables us to transfer Imagenet trained representations without using the Imagenet dataset

Theoretical Results

• When does LwF work? If the teacher network produces meaningless outputs, LwF would not help

Q: When does the teacher produce useful outputs?

A: Three conditions must be satisfied :

- the **teacher's loss** on the source dataset (Imagenet) is **small**
- the **teacher's Lipschitz** constant is **small**
- "distance" between source and target datasets is **small**
- Does improving distillation improve transfer learning?

Q: Does Jacobian matching improve over LwF? A: Yes.

Crucial to the proof is the equivalence between Jacobian matching and matching outputs with input noise.

Distillation Results

- **Teacher** : VGG-9, obtains 64.78% accuracy
- Student : VGG-4
- Dataset : CIFAR-100

# of Data points per class	10	50	500 (full)
Regular Cross-Entropy (CE) training	20.03	37.6	54.28
Match Activations + CE	33.92	46.47	56.65
Match {Activations + Jacobians} + CE	39.55	49.49	54.57
Match Activations only	33.6	45.73	56.59
Match {Activations + Jacobians}	38.16	47.79	51.33

Transfer Learning Results

- **Teacher** : Imagenet pre-trained ResNet-32
- Student : VGG-9
- **Target dataset** : MIT Indoor Scenes (67 classes)

# of Data points per class $ ightarrow$	25	50	Full
No Transfer Learning	35.19	46.38	59.33
Fine-tuning Oracle <i>a</i>	57.65	64.18	71.42
LwF [3]	45.08	55.22	65.22
LwF + Jacobians	45.26	56.49	66.04
LwF + attention [2] LwF + attention + Jacobians	46.01 47.31	57.80 58.35	67.24 67.31

^aRequires teacher and student to have the same architecture

References

[1] Czarnecki et.al. Sobolev training for neural networks. NIPS, 2017

[2] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention. ICLR, 2017

[3] Zhizhong Li and Derek Hoiem. *Learning without forgetting*. PAMI, 2017

Acknowledgements

