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Saliency Maps represent "importance" of input
pixels as seen by a model performing a task.

Research Question: \Why are sa
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Our Findings:
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which they

e Improving this generative model using

score-matching improves

interpretability, while deteriorating this
generative model has the opposite effect
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Implicit Density Models

The logits f;(x) of softmax-based models for class i...
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..can be viewed as an energy function ...
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..and the logit-gradients as gradients of the log density!

Vxlogpe(x |y =1) = Vifi(x)
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This leads to the following hypothesis:

_ogit-gradients are highly structured because of
their alignment with the ground truth gradients

Vi 109 paata(x | v) &= Vi log pg(x | y) = Vfi(x)

Score-Matching

Score-Matching is a generative modelling principle
Dased on aligning gradients of log density, by minimizing
the following objective.
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This can be re-written as an objective which omits the
unknown Vy log pgara(x) term.

1
(0) = Epy 0 (trace(V2 log pu(x)) + 51 Viclog () ) +C

Interpretability <= Generative Modelling

Implicit density modelling perspective reveals generative
modelling interpretations of the following methods
ordinarily used for interpretability.

e Logit-gradients < gradients of log density

e Activation maximization of logits <= MCMC
sampling via Langevin dynamics

e Pixel perturbation test <= density ratio test

Experimental Setup

Objective: Train models with different levels of gradient
alignment by regularization, and study their effect on
input-gradient interpretability.

breg(F(Xx), 1) = £(f(x),1) +X R(x)
S | S ——
regularized loss Cross-entropy Regularizer

Regularized Score-Matching: \We propose relaxations
of score-matching to overcome computational
intractability of Hessian trace estimation, and stabilize
the objective, which we use as a regularizer.
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Other Baselines: We use the following other baseline
regularizations for comparison

e NO regularization

e Anti-score-matching regularization, where hessian
trace is maximized instead of being minimizeao

e Gradient norm regularization, where norm of
iNnput-gradients is minimizec
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Effect on Generative Modelling

We measure sample gquality using the GAN-test scores
(higher is better) on samples generated from the implicit
density models via Langevin MCMC.

Model GAN-test (%)
Baseline ResNet 59.47
+ Anti-Score-Matching 16.40
+ Gradient Norm-regularization 80.07
+ Score-Matching 72.75

Conclusion: Score-matching and gradient-norm
regularization improves, while anti-score-matching
deteriorates sample quality.

Effect on Interpretability

We measure a proxy for interpretability using the
nixel perturbation test (higher is Dbetter) on the
input-gradients of various models.
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Conclusion: Score-matching and gradient-norm
regularized models improves, while anti-score-matching
deteriorates gradient interpretanility.
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